Джон митчелл черные дыры


Алексей Левин
«Популярная механика» №11, 2005

Научное мышление подчас конструирует объекты со столь парадоксальными свойствами, что даже самые проницательные ученые поначалу отказывают им в признании. Самый наглядный пример в истории новейшей физики — многолетнее отсутствие интереса к черным дырам, экстремальным состояниям гравитационного поля, предсказанным почти 90 лет назад. Долгое время их считали чисто теоретической абстракцией, и лишь в 1960-70-е годы уверовали в их реальность. Однако основное уравнение теории черных дыр было выведено свыше двухсот лет назад.

Озарение Джона Мичелла

Имя Джона Мичелла, физика, астронома и геолога, профессора Кембриджского университета и пастора англиканской церкви, совершенно незаслуженно затерялось среди звезд английской науки XVIII века. Мичелл заложил основы сейсмологии — науки о землетрясениях, выполнил превосходное исследование магнетизма и задолго до Кулона изобрел крутильные весы, которые использовал для гравиметрических измерений. В 1783 году он попытался объединить два великих творения Ньютона — механику и оптику. Ньютон считал свет потоком мельчайших частиц. Мичелл предположил, что световые корпускулы, как и обычная материя, подчиняются законам механики. Следствие из этой гипотезы оказалось весьма нетривиальным — небесные тела могут превратиться в ловушки для света.


Как рассуждал Мичелл? Пушечное ядро, выстреленное с поверхности планеты, полностью преодолеет ее притяжение, лишь если его начальная скорость превысит значение, называемое теперь второй космической скоростью и скоростью убегания. Если гравитация планеты столь сильна, что скорость убегания превышает скорость света, выпущенные в зенит световые корпускулы не смогут уйти в бесконечность. Это же произойдет и с отраженным светом. Следовательно, для очень удаленного наблюдателя планета окажется невидимой. Мичелл вычислил критическое значение радиуса такой планеты Rкр в зависимости от ее массы М, приведенной к массе нашего Солнца Ms: Rкр = 3 км x M/Ms.

Джон Мичелл верил своим формулам и предполагал, что глубины космоса скрывают множество звезд, которые с Земли нельзя разглядеть ни в один телескоп. Позже к такому же выводу пришел великий французский математик, астроном и физик Пьер Симон Лаплас, включивший его и в первое (1796), и во второе (1799) издания своего «Изложения системы мира». А вот третье издание вышло в свет 1808 году, когда большинство физиков уже считало свет колебаниями эфира. Существование «невидимых» звезд противоречило волновой теории света, и Лаплас счел за лучшее о них просто не упоминать. В последующие времена эту идею считали курьезом, достойным изложения лишь в трудах по истории физики.


Модель Шварцшильда

В ноябре 1915 года Альберт Эйнштейн опубликовал теорию гравитации, которую он назвал общей теорией относительности (ОТО). Эта работа сразу же нашла благодарного читателя в лице его коллеги по Берлинской Академии наук Карла Шварцшильда. Именно Шварцшильд первым в мире применил ОТО для решения конкретной астрофизической задачи, расчета метрики пространства-времени вне и внутри невращающегося сферического тела (для конкретности будем называть его звездой).

Из вычислений Шварцшильда следует, что тяготение звезды не слишком искажает ньютоновскую структуру пространства и времени лишь в том случае, если ее радиус намного больше той самой величины, которую вычислил Джон Мичелл! Этот параметр сначала называли радиусом Шварцшильда, а сейчас именуют гравитационным радиусом. Согласно ОТО, тяготение не влияет на скорость света, но уменьшает частоту световых колебаний в той же пропорции, в которой замедляет время. Если радиус звезды в 4 раза превосходит гравитационный радиус, то поток времени на ее поверхности замедляется на 15%, а пространство приобретает ощутимую кривизну.


и двукратном превышении оно искривляется сильнее, а время замедляет свой бег уже на 41%. При достижении гравитационного радиуса время на поверхности звезды полностью останавливается (все частоты зануляются, излучение замораживается, и звезда гаснет), однако кривизна пространства там все еще конечна. Вдали от светила геометрия по-прежнему остается евклидовой, да и время не меняет своей скорости.

Несмотря на то что значения гравитационного радиуса у Мичелла и Шварцшильда совпадают, сами модели не имеют ничего общего. У Мичелла пространство и время не изменяются, а свет замедляется. Звезда, размеры которой меньше ее гравитационного радиуса, продолжает светить, однако видна она только не слишком удаленному наблюдателю. У Шварцшильда же скорость света абсолютна, но структура пространства и времени зависит от тяготения. Провалившаяся под гравитационный радиус звезда исчезает для любого наблюдателя, где бы он ни находился (точнее, ее можно обнаружить по гравитационным эффектам, но отнюдь не по излучению).

От неверия к утверждению

Шварцшильд и его современники полагали, что столь странные космические объекты в природе не существуют. Сам Эйнштейн не только придерживался этой точки зрения, но и ошибочно считал, что ему удалось обосновать свое мнение математически.

В 1930-е годы молодой индийский астрофизик Чандрасекар доказал, что истратившая ядерное топливо звезда сбрасывает оболочку и превращается в медленно остывающий белый карлик лишь в том случае, если ее масса меньше 1,4 масс Солнца.


коре американец Фриц Цвикки догадался, что при взрывах сверхновых возникают чрезвычайно плотные тела из нейтронной материи; позднее к этому же выводу пришел и Лев Ландау. После работ Чандрасекара было очевидно, что подобную эволюцию могут претерпеть только звезды с массой больше 1,4 масс Солнца. Поэтому возник естественный вопрос — существует ли верхний предел массы для сверхновых, которые оставляют после себя нейтронные звезды?

В конце 30-х годов будущий отец американской атомной бомбы Роберт Оппенгеймер установил, что такой предел действительно имеется и не превышает нескольких солнечных масс. Дать более точную оценку тогда не было возможности; теперь известно, что массы нейтронных звезд обязаны находиться в интервале 1,5–3 Ms. Но даже из приблизительных вычислений Оппенгеймера и его аспиранта Джорджа Волкова следовало, что самые массивные потомки сверхновых не становятся нейтронными звездами, а переходят в какое-то другое состояние. В 1939 году Оппенгеймер и Хартланд Снайдер на идеализированной модели доказали, что массивная коллапсирующая звезда стягивается к своему гравитационному радиусу. Из их формул фактически следует, что звезда на этом не останавливается, однако соавторы воздержались от столь радикального вывода.

Окончательный ответ был найден во второй половине XX века усилиями целой плеяды блестящих физиков-теоретиков, в том числе и советских.


азалось, что подобный коллапс всегда сжимает звезду «до упора», полностью разрушая ее вещество. В результате возникает сингулярность, «суперконцентрат» гравитационного поля, замкнутый в бесконечно малом объеме. У неподвижной дыры это точка, у вращающейся — кольцо. Кривизна пространства-времени и, следовательно, сила тяготения вблизи сингулярности стремятся к бесконечности. В конце 1967 года американский физик Джон Арчибальд Уилер первым назвал такой финал звездного коллапса черной дырой. Новый термин полюбился физикам и привел в восторг журналистов, которые разнесли его по всему миру (хотя французам он сначала не понравился, поскольку выражение trou noir наводило на сомнительные ассоциации).

Там, за горизонтом

Черная дыра — это не вещество и не излучение. С некоторой долей образности можно сказать, что это самоподдерживающееся гравитационное поле, сконцентрированное в сильно искривленной области пространства-времени. Ее внешняя граница задается замкнутой поверхностью, горизонтом событий. Если звезда перед коллапсом не вращалась, эта поверхность оказывается правильной сферой, радиус которой совпадает с радиусом Шварцшильда.

Физический смысл горизонта очень нагляден. Световой сигнал, посланный с его внешней окрестности, может уйти на бесконечно далекую дистанцию. А вот сигналы, отправленные из внутренней области, не только не пересекут горизонта, но и неизбежно «провалятся» в сингулярность. Горизонт — это пространственная граница между событиями, которые могут стать известны земным (и любым иным) астрономам, и событиями, информация о которых ни при каком раскладе не выйдет наружу.


Как и положено «по Шварцшильду», вдали от горизонта притяжение дыры обратно пропорционально квадрату расстояния, поэтому для удаленного наблюдателя она проявляет себя как обычное тяжелое тело. Кроме массы, дыра наследует момент инерции коллапсировшей звезды и ее электрический заряд. А все остальные характеристики звезды-предшественницы (структура, состав, спектральный класс и т. п.) уходят в небытие.

Отправим к дыре зонд с радиостанцией, подающей сигнал раз в секунду по бортовому времени. Для удаленного наблюдателя по мере приближения зонда к горизонту интервалы времени между сигналами будут увеличиваться — в принципе, неограниченно. Как только корабль пересечет невидимый горизонт, он полностью замолчит для «наддырного» мира. Однако это исчезновение не окажется бесследным, поскольку зонд отдаст дыре свою массу, заряд и вращательный момент.

Чернодырное излучение

Все предыдущие модели были построены исключительно на основе ОТО. Однако наш мир управляется законами квантовой механики, которые не обходят вниманием и черные дыры. Эти законы не позволяют считать центральную сингулярность математической точкой.


квантовом контексте ее поперечник задается длиной Планка—Уилера, приблизительно равной 10–33 сантиметра. В этой области обычное пространство перестает существовать. Принято считать, что центр дыры нафарширован разнообразными топологическими структурами, которые появляются и погибают в соответствии с квантовыми вероятностными закономерностями. Свойства подобного пузырящегося квазипространства, которое Уилер назвал квантовой пеной, еще мало изучены.

Наличие квантовой сингулярности имеет прямое отношение к судьбе материальных тел, падающих вглубь черной дыры. При приближении к центру дыры любой объект, изготовленный из ныне известных материалов, будет раздавлен и разорван приливными силами. Однако даже если будущие инженеры и технологи создадут какие-то сверхпрочные сплавы и композиты с невиданными ныне свойствами, все они все равно обречены на исчезновение: ведь в зоне сингулярности нет ни привычного времени, ни привычного пространства.

Теперь рассмотрим в квантовомеханическую лупу горизонт дыры. Пустое пространство — физический вакуум — на самом деле отнюдь не пусто. Из-за квантовых флуктуаций различных полей в вакууме непрерывно рождается и погибает множество виртуальных частиц. Поскольку тяготение около горизонта весьма велико, его флуктуации создают чрезвычайно сильные гравитационные всплески. При разгоне в таких полях новорожденные «виртуалы» приобретают дополнительную энергию и подчас становятся нормальными долгоживущими частицами.


Виртуальные частицы всегда рождаются парами, которые движутся в противоположных направлениях (этого требует закон сохранения импульса). Если гравитационная флуктуация извлечет из вакуума пару частиц, может случиться так, что одна из них материализуется снаружи горизонта, а вторая (античастица первой) — внутри. «Внутренняя» частица провалится в дыру, а вот «внешняя» при благоприятных условиях может уйти. В результате дыра превращается в источник излучения и поэтому теряет энергию и, следовательно, массу. Поэтому черные дыры в принципе не стабильны.

Этот феномен называется эффектом Хокинга, в честь замечательного английского физика-теоретика, который его открыл в середине 1970-х годов. Стивен Хокинг, в частности, доказал, что горизонт черной дыры излучает фотоны точно так же, как и абсолютно черное тело, нагретое до температуры T = 0,5 x 10–7 x Ms/M. Отсюда следует, что по мере похудания дыры ее температура возрастает, а «испарение», естественно, усиливается. Этот процесс чрезвычайно медленный, и время жизни дыры массы M составляет около 1065 x (M/Ms)3 лет. Когда ее размер становится равным длине Планка—Уилера, дыра теряет стабильность и взрывается, выделяя ту же энергию, что и одновременный взрыв миллиона десятимегатонных водородных бомб. Любопытно, что масса дыры в момент ее исчезновения все еще довольно велика, 22 микрограмма. Согласно некоторым моделям, дыра не исчезает бесследно, а оставляет после себя стабильный реликт такой же массы, так называемый максимон.


Максимон родился 40 лет назад — как термин и как физическая идея. В 1965 году академик М. А. Марков предположил, что существует верхняя граница массы элементарных частиц. Он предложил считать этим предельным значением величину размерности массы, которую можно скомбинировать из трех фундаментальных физических констант — постоянной Планка h, скорости света C и гравитационной постоянной G (для любителей подробностей: для этого надо перемножить h и C, разделить результат на G и извлечь квадратный корень). Это те самые 22 микрограмма, о которых говорится в статье, эту величину называют планковской массой. Из тех же констант можно сконструировать величину с размерностью длины (выйдет длина Планка—Уилера, 10–33 см) и с размерностью времени (10–43 сек).
Марков пошел в своих рассуждениях и дальше. Согласно его гипотезе, испарение черной дыры приводит к образованию «сухого остатка» — максимона. Марков назвал такие структуры элементарными черными дырами. Насколько эта теория отвечает реальности, пока что вопрос открытый. Во всяком случае, аналоги марковских максимонов возрождены в некоторых моделях черных дыр, выполненных на базе теории суперструн.


Глубины космоса

Черные дыры не запрещены законами физики, но существуют ли они в природе? Совершенно строгие доказательства наличия в космосе хоть одного подобного объекта пока не найдены. Однако весьма вероятно, что в некоторых двойных системах источниками рентгеновского излучения являются черные дыры звездного происхождения. Это излучение должно возникать вследствие отсасывания атмосферы обычной звезды гравитационным полем дыры-соседки. Газ во время движения к горизонту событий сильно нагревается и испускает рентгеновские кванты. Не меньше двух десятков рентгеновских источников сейчас считаются подходящими кандидатами на роль черных дыр. Более того, данные звездной статистики позволяют предположить, что только в нашей Галактике существует около десяти миллионов дыр звездного происхождения.

Черные дыры могут формироваться и в процессе гравитационного сгущения вещества в галактических ядрах. Так возникают исполинские дыры с массой в миллионы и миллиарды солнечных, которые, по всей вероятности, имеются во многих галактиках. Судя по всему, в закрытом пылевыми облаками центре Млечного Пути прячется дыра с массой 3-4 миллиона масс Солнца.

Стивен Хокинг пришел к выводу, что черные дыры произвольной массы могли рождаться и сразу после Большого Взрыва, давшего начало нашей Вселенной. Первичные дыры массой до миллиарда тонн уже испарились, но более тяжелые могут и сейчас скрываться в глубинах космоса и в свой срок устроивать космический фейерверк в виде мощнейших вспышек гамма-излучения. Однако до сих пор такие взрывы ни разу не наблюдались.

Фабрика черных дыр

А нельзя ли разогнать частицы в ускорителе до столь высокой энергии, чтобы их столкновение породило черную дыру? На первый взгляд, эта идея просто безумна — взрыв дыры уничтожит все живое на Земле. К тому же она технически неосуществима. Если минимальная масса дыры действительно равна 22 микрограммам, то в энергетических единицах это 1028 электронвольт. Этот порог на 15 порядков превышает возможности самого мощного в мире ускорителя, Большого адронного коллайдера (БАК), который будет запущен в ЦЕРНе в 2007 году.

Однако не исключено, что стандартная оценка минимальной массы дыры значительно завышена. Во всяком случае, так утверждают физики, разрабатывающие теорию суперструн, которая включает в себя и квантовую теорию гравитации (правда, далеко не завершенную). Согласно этой теории, пространство имеет не три измерения, а не менее девяти. Мы не замечаем дополнительных измерений, поскольку они закольцованы в столь малых масштабах, что наши приборы их не воспринимают. Однако гравитация вездесуща, она проникает и в скрытые измерения. В трехмерном пространстве сила тяготения обратно пропорциональна квадрату расстояния, а в девятимерном — восьмой степени. Поэтому в многомерном мире напряженность гравитационного поля при уменьшении дистанции возрастает намного быстрее, нежели в трехмерном. В этом случае планковская длина многократно увеличивается, а минимальная масса дыры резко падает.

Теория струн предсказывает, что в девятимерном пространстве может родиться черная дыра с массой всего лишь в 10–20 г. Примерно такова же и расчетная релятивистская масса протонов, разогнанных в церновском суперускорителе. Согласно наиболее оптимистическому сценарию, он сможет ежесекундно производить по одной дыре, которая проживет около 10–26 секунд. В процессе ее испарения будут рождаться всевозможные элементарные частицы, которые будет несложно зарегистрировать. Исчезновение дыры приведет к выделению энергии, которой не хватит даже для того, чтобы нагреть одним микрограмм воды на тысячную градуса. Поэтому есть надежда, что БАК превратится в фабрику безвредных черных дыр. Если эти модели верны, то такие дыры смогут регистрировать и орбитальные детекторы космических лучей нового поколения.

Все вышеописанное относится к неподвижным черным дырам. Между тем, существуют и вращающиеся дыры, обладающие букетом интереснейших свойств. Результаты теоретического анализа чернодырного излучения привели также к серьезному переосмыслению понятия энтропии, которое также заслуживает отдельного разговора. Об этом — в следующем номере.

Источник: elementy.ru

Ниже собраны наиболее удивительные и интересные факты, известные о чёрных дырах…

1. Первое предположение о существовании чёрных дыр сделал Джон Митчелл

Большинство полагает, что открытие существования чёрных дыр — заслуга Альберта Эйнштейна.
Однако Эйнштейн закончил свою теорию к 1916-му году, а Джон Митчелл обдумывал эту идею ещё в далёком 1783-м. Она не нашла применения потому, что этот английский священник просто не знал, что с ней делать.
Митчелл начал разрабатывать теорию чёрных дыр, когда принял идею Ньютона, согласно которой свет состоит из маленьких материальных частиц, называемых фотонами. Он размышлял о движении этих световых частиц и пришёл к выводу, что оно зависит от гравитационного поля звезды, которую они покидают. Он пытался понять, что произойдёт с этими частицами, если гравитационное поле будет слишком большим, чтобы свет мог его покинуть.
Митчелл также является основателем современной сейсмологии. Он предположил, что землетрясения распространяются в земле подобно волнам.

2. Они действительно притягивают пространство вокруг себя

Попробуйте представить космос в виде резинового листа. Представьте, что планеты — это шарики, которые давят на этот лист. Он деформируется и больше не имеет прямых линий. Это создаёт гравитационное поле и объясняет, почему планеты движутся вокруг звёзд.
Если масса объекта возрастёт, то деформация пространства может стать ещё больше. Эти дополнительные возмущения увеличивают силу притяжения и ускоряют движение по орбите, заставляя спутники двигаться вокруг объектов всё быстрее и быстрее.
Например, Меркурий движется вокруг солнца со скоростью 48 км/с, в то время как орбитальная скорость звёзд неподалёку от чёрной дыры в центре нашей галактики достигает 4800 км/с.
Если сила притяжения достаточно сильна, то спутник сталкивается с большим по размеру объектом.

3. Не все чёрные дыры одинаковы

Мы обычно думаем, что всё чёрные дыры по сути одно и то же. Однако астрономы недавно выяснили, что их можно разделить на несколько разновидностей.
Есть вращающиеся чёрные дыры, черные дыры с электрическим зарядом и чёрные дыры, включающие черты первых двух. Обычные чёрные дыры возникают путём поглощения материи, а вращающаяся чёрная дыра образуется путём слияния двух таких дыр.
Эти чёрные дыры расходуют намного больше энергии из-за возросшего возмущения пространства. Заряженная вращающаяся чёрная дыра действует как ускоритель частиц.
Чёрная дыра, названная GRS 1915+105, находится на расстоянии около 35 тысяч световых лет от Земли. Она крутится со скоростью 950 оборотов в секунду.

4. Их плотность невероятно высока

Чёрным дырам необходимо быть чрезмерно массивными при невероятно маленьких размерах, чтобы создавать достаточно большую силу притяжения для сдерживания света. К примеру, если сделать чёрную дыру массой равной массе Земли, то получится шарик с диаметром всего 9 мм.
Чёрная дыра, масса которой в 4 миллиона раз превышает массу Солнца, может уместиться в пространство между Меркурием и Солнцем. Чёрные дыры в центре галактик могут иметь массу, превышающую массу Солнца от 10 до 30 миллионов раз.
Такая большая масса на таком маленьком пространстве означает, что чёрные дыры имеют невероятно большую плотность и силы, действующие внутри них, также очень сильны.

5. Они достаточно шумные

Всё, что окружает чёрную дыру, затягивается в эту бездну и одновременно с этим ускоряется. Горизонт событий (граница области пространства-времени, начиная с которой информация не может достичь наблюдателя из-за конечности скорости света; прим. mixstuff) разгоняет частицы почти до скорости света.
Во время пересечения материей центра горизонта событий возникает булькающий звук. Этот звук является преобразованием энергии движения в звуковые волны.
В 2003-м году астрономы с помощью космической рентгеновской обсерватории Чандра зафиксировали звуковые волны, исходящие от сверхмассивной чёрной дыры, находящейся на расстоянии 250 миллионов световых лет.

6. Ничто не может ускользнуть от их притяжения

Когда что-либо (это может быть и планета, и звезда, и галактика, и частица света) проходит достаточно близко от чёрной дыры, то этот объект неизбежно будет захвачен её гравитационным полем. Если что-то ещё воздействующее на объект, скажем, на ракету, сильнее силы притяжения чёрной дыры, то он сможет избежать поглощения.
До тех пор, конечно, пока оно не достигнет горизонта событий. Точки, после которой покинуть чёрную дыру уже невозможно. Для того, чтобы покинуть горизонт событий, необходимо развить скорость, большую чем скорость света, а это невозможно.
Это тёмная сторона чёрной дыры — если уж свет не может её покинуть, то мы никогда не сможем заглянуть внутрь.
Учёные полагают, что даже маленькая чёрная дыра разорвёт вас на куски задолго до того, как вы проскочите через горизонт событий. Сила притяжения тем больше, чем вы ближе к планете, звезде или чёрной дыре. Если вы летите к чёрной дыре вперёд ногами, то сила притяжения в ваших ступнях будет намного больше, чем в голове. Это и разорвёт вас на части.

7. Они замедляют время

Свет огибает горизонт событий, но, в конечном счете, он захватывается в небытие, когда проникает внутрь.
Можно описать то, что произойдёт с часами, если они попадут внутрь чёрной дыры и уцелеют там. По мере приближения к горизонту событий, они будут замедляться и в конце концов полностью остановятся.
Эта заморозка времени происходит вследствие гравитационного замедления времени, которое объясняется теорией относительности Эйнштейна. Сила притяжения в чёрной дыре настолько велика, что она может замедлять время. С точки зрения часов, всё идёт нормально. Часы пропадут из поля зрения, в то время как свет от них будет ещё растягиваться. Свет будет становиться всё более красным, длина волны будет увеличиваться и в итоге он выйдет за пределы видимого спектра.

8. Они являются совершенными производителями энергии

Чёрные дыры засасывают всю окружающую массу. Внутри чёрной дыры всё это прессуется настолько сильно, что пространство между отдельными элементами атомов сжимается, и в результате образуются субатомные частицы, способные вылетать наружу. Эти частицы вырываются из чёрной дыры благодаря линиям магнитного поля, пересекающим горизонт событий.
Выделение частиц создаёт энергию довольно эффективным способом. Преобразование массы в энергию этим путём в 50 раз намного более эффективно, нежели ядерный синтез.

9. Они ограничивают количество звёзд

Однажды известный астрофизик, Карл Саган, сказал: во Вселенной больше звёзд, чем песчинок на пляжах всего мира. Но похоже, что во Вселенной всего 1022 звезды.
Это число определяется количеством чёрных дыр. Потоки частиц, выпускаемые чёрными дырами, расширяются до пузырей, которые распространяются сквозь области формирования звёзд. Области формирования звёзд — это участки газовых облаков, которые могут охлаждаться и образовывать звёзды. Потоки частиц нагревают эти газовые облака и предотвращают появление звёзд.
Это означает, что существует сбалансированное соотношение между количеством звёзд и активностью чёрных дыр. Очень большое количество звёзд расположенных в галактике сделает её слишком горячей и взрывоопасной для развития жизни, однако слишком маленькое количество звёзд также не способствует возникновению жизни.

10. Мы состоим из одного и того же материала

Некоторые исследователи полагают, что чёрные дыры помогут нам при создании новых элементов, потому что они разбивают материю на субатомные частицы.
Эти частицы участвуют в образовании звёзд, что в свою очередь ведёт к созданию элементов тяжелее гелия, таких как железо и углерод, необходимых для образования твёрдых планет и жизни. Эти элементы входят в состав всего, что имеет массу, а значит и нас с вами.Источник: СМИ

Источник: x-files.site

Что такое черная дыра

Черной дырой в классическом понимании называют область пространства-времени, гравитационное притяжение которой настолько сильно, что ее не могут покинуть никакие объекты, движущиеся со скоростью света. Даже кванты самого света.

Граница черной дыры называется горизонтом событий, а ее размер — гравитационным радиусом. Черные дыры притягивают к себе материю, которая образовывает вокруг них аккреционный диск — гигантскую структуру вокруг черной дыры, которая быстро вращается. Именно из-за материи, светящейся во время вращения, ученым и удалось обнаружить существование черных дыр. При этом внутрь черной дыры попадает лишь небольшое количество этой материи, остальное отправляется обратно в космос в виде струи плазмы или джета, траектория которой совпадает с линиями магнитного поля. У некоторыхчерных дыр скорость движения этой плазмы достигает 99% от скорости света.


Сейчас в астрофизике существует четыре основных сценария образования черных дыр.

Гравитационный коллапс очень массивной звезды. Согласно этой гипотезе, в конце своей жизни практически любая звезда с массой более трех солнечных, которая уже израсходовала все термоядерные реакции, может превратиться именно в такой тип сверхплотной материи — в нейтронную звезду, которая необходима для возникновения подобного искривленного участка Вселенной. По сути, это звезда, которая схлопывается под собственной тяжестью, увлекает за собой пространственно-временной континуум, находящийся вокруг нее. Гравитационное поле этого объекта становится настолько сильным, что из него не может вырваться даже свет. Поэтому эта область называется черной дырой.

Коллапс центральной части галактики или области протогалактического газа. По сути, процесс появления черных дыр в этой гипотезе очень похож на первый вариант, только коллапсирует под собственным весом часть галактики, а не отдельная звезда. Эта гипотеза основана на наблюдении ученых, что практически каждая галактика имеет черную дыру в своем центре. Это не сходится с версией о появлении черных дыр из коллапсирующих звезд.

Появление черных дыр в момент начального расширения Вселенной, так называемые первичные черные дыры. Согласно этой гипотезе, сразу же после Большого взрыва давление и температура в космосе были сверхвысокими. В таких условиях простые колебания плотности материи, например, начало расширения Вселенной, были достаточно значительными, чтобы появились территории с такой гравитацией. При этом большинство областей с высокой плотностью удалилось друг от друга из-за расширения Вселенной. Также космологами высказано предположение, что первичные черные дыры с массами в диапазоне от 1014 до 1023 кг могут составлять темную материю. Это наиболее тяжелые кандидаты на частицы темной материи.

Возникновение черных дыр в ядерных реакциях высоких энергий. Подобные реакции используют для изучения частиц в адронных коллайдерах.


Кроме того, черными дырами ученые часто называют объекты, не полностью соответствующие их точному определению, а лишь приближающиеся по своим свойствам к ним. В эту же категорию входят коллапсирующие звезды на поздних стадиях коллапса.

С 1970-х годов в среде астрофизиков существует теория белых дыр — полной противоположности черных дыр, которые не пропускают в себя материю и энергию, а только выбрасывают ее. Согласно математическим расчетам, белые дыры должны выбрасывать энергию и материю в огромном количестве, однако на сегодняшний день ученые не смогли найти доказательство существования этих космических объектов. Существует множество теорий возникновения белых дыр, начиная с того, что белой дырой был Большой взрыв, и заканчивая возникновением этого объекта в результате смерти черной дыры. Подробнее об этом типе космических объектов «Хайтек» подробно рассказывал здесь.

При этом пока неизвестно, что становится с черными дырами после их смерти. Ученые считают, что Вселенная еще слишком молода для разрушения первых из них. Согласно математическим расчетам Стивена Хокинга, черные дыры должны постепенно просто испаряться, отдавая свою энергию в окружающую среду.

Открытие черных дыр

Концепция существования массивного тела, гравитационное притяжение которого настолько велико, что скорость, которая необходима для его преодоления, превышает скорость движения света (а значит физически не может существовать во Вселенной), была впервые выдвинута английским ученым Джоном Мичеллом в 1784 году.

В своем письме в Королевское общество он рассказал, что в космосе может существовать множество таких недоступных наблюдению объектов радиусом в 500 солнечных, но с плотностью Солнца, гравитация которых не позволит свету выйти наружу.

Однако эта гипотеза вскоре была забыта, поскольку в рамках классической физики скорость света не имеет фундаментального значения. И только после того, как в 1905 году Альберт Эйнштейн в своей специальной теории относительности (СТО) использовал разработки электродинамики Лоренца, скорость света оказалась предельной, которую может развивать физическое тело. Это радикально изменило значение черных дыр в теоретической физике.

Следующий большой вклад в их изучение внес индийский нобелевский лауреат Субраманьян Чандрасекар, который создал фундаментальную для этого направления монографию — «Математическая теория черных дыр». Он изучал строение массивных звезд и возможное их превращение в нейтронные звезды либо черные дыры. Кроме того, он первым выдвинул теорию «об отсутствии волос» — о том, что у стационарной черной дыры нет внешних характеристик, помимо массы, момента импульса и определенных зарядов (специфических для различных материальных полей).

Фактически существование черных дыр было доказано только в 2015 году, а первый снимок их тени был сделан в апреле 2019 года — многие научные эксперты признали это открытие главным научным прорывом последнего десятилетия.


Существует несколько типов черных дыр:

  • Черная звезда звездной массы. Такие объекты, согласно общепринятым гипотезам, возникают в результате коллапса звезды. Минимальная масса тела, которая должна создать такой объект, составляет около трех солнечных.
  • Черная звезда средней массы. Промежуточный этап черной дыры, которая увеличилась за счет поглощения в себя газовых скоплений либо соседней звезды в системах парных звезд.
  • Сверхмассивные черные дыры. Объекты с массой с 105–1011 масс Солнца с достаточно невысокой плотностью и слабыми приливными силами. Именно такая черная дыра находится в центре Млечного пути.
  • Ультрамассивные черные дыры. Достаточно редкое явление во Вселенной. Например, в центре галактики Holm 15A, самой яркой в скоплении галактик Абель, ученые недавно обнаружили ультрамассивную черную дыру с массой в 40 млрд солнечных. Пока это самый тяжелый объект во Вселенной, известный ученым. Обнаружить объект исследователям удалось в ходе наблюдений за движением звезд в этой галактике. Его масса вдвое больше, чем у предыдущих рекордсменов. Кроме того, он в 10 000 раз массивнее, чем черная дыра Стрелец А* в центре Млечного пути.

Сколько черных дыр во Вселенной?

Никто не знает, поскольку наблюдать их достаточно сложно, и человечество пока находится только в самом начале изучения этих космических объектов. Точно известно, что в Млечном пути ученые обнаружили около десятка, однако в нашей галактике до 400 млрд звезд, из которых каждая тысячная имеет достаточно массы, чтобы образовать в конце своего существования черную дыру.

Источник: hightech.fm

История идеи о черных дырах.

Английский геофизик и астроном Джон Мичелл (J.Michell, 1724–1793) предположил, что в природе могут существовать столь массивные звезды, что даже луч света не способен покинуть их поверхность. Используя законы Ньютона, Мичелл рассчитал, что если бы звезда с массой Солнца имела радиус не более 3 км, то даже частицы света (которые он, вслед за Ньютоном, считал корпускулами) не могли бы улететь далеко от такой звезды. Поэтому такая звезда казалась бы издалека абсолютно темной. Эту идею Мичелл представил на заседании Лондонского Королевского общества 27 ноября 1783. Так родилась концепция «ньютоновской» черной дыры.

Такую же идею высказал в своей книге Система мира (1796) французский математик и астроном Пьер Симон Лаплас. Простой расчет позволил ему написать: «Светящаяся звезда с плотностью, равной плотности Земли, и диаметром, в 250 раз большим диаметра Солнца, не дает ни одному световому лучу достичь нас из-за своего тяготения; поэтому возможно, что самые яркие небесные тела во Вселенной оказываются по этой причине невидимыми». Однако масса такой звезды должна была бы в десятки миллионов раз превосходить солнечную. А поскольку дальнейшие астрономические измерения показали, что массы реальных звезд не очень сильно отличаются от солнечной, идея Митчела и Лапласа о черных дырах была забыта.

Во второй раз ученые «столкнулись» с черными дырами в 1916, когда немецкий астроном Карл Шварцшильд получил первое точное решение уравнений только что созданной тогда Альбертом Эйнштейном релятивистской теории гравитации – общей теории относительности (ОТО). Оказалось, что пустое пространство вокруг массивной точки обладает особенностью на расстоянии rg от нее; именно поэтому величину rg часто называют «шварцшильдовским радиусом», а соответствующую поверхность (горизонт событий) – шварцшильдовской поверхностью. В следующие полвека усилиями теоретиков были выяснены многие удивительные особенности решения Шварцшильда, но как реальный объект исследования черные дыры еще не рассматривались.

Правда, в 1930-е, после создания квантовой механики и открытия нейтрона, физики исследовали возможность формирования компактных объектов (белых карликов и нейтронных звезд)как продуктов эволюции нормальных звезд. Оценки показали, что после истощения в недрах звезды ядерного топлива, ее ядро может сжаться превратиться в маленький и очень плотный белый карлик или же в еще более плотную и совсем крохотную нейтронную звезду.

В 1934 работавшие в США европейские астрономы Фриц Цвикки и Вальтер Бааде выдвинули гипотезу – вспышки сверхновых представляют собой совершенно особый тип звездных взрывов, вызванных катастрофическим сжатием ядра звезды. Так впервые родилась идея о возможности наблюдать коллапс звезды. Бааде и Цвикки высказали предположение, что в результате взрыва сверхновой образуется сверхплотная вырожденная звезда, состоящая из нейтронов. Расчеты показали, что такие объекты действительно могут рождаться и быть устойчивыми, но лишь при умеренной начальной массе звезды. Но если масса звезды превышает три массы Солнца, то уже ничто не сможет остановить ее катастрофического коллапса.

В 1939 американские физики Роберт Оппенгеймер и Хартланд Снайдер обосновали вывод, что ядро массивной звезды должно безостановочно коллапсировать в предельно малый объект, свойства пространства вокруг которого (если он не вращается) описываются решением Шварцшильда. Иными словами, ядро массивной звезды в конце ее эволюции должно стремительно сжиматься и уходить под горизонт событий, становясь черной дырой. Но поскольку такой объект (как говорили тогда, «коллапсар», или «застывшая звезда») не излучает электромагнитные волны, то астрономы понимали, что обнаружить его в космосе будет невероятно трудно и поэтому долго не приступали к поиску.

Поскольку никакой носитель информации не способен выйти из-под горизонта событий, внутренняя часть черной дыры причинно не связана с остальной Вселенной, происходящие внутри черной дыры физические процессы не могут влиять на процессы вне ее. В то же время, вещество и излучение, падающие снаружи на черную дыру, свободно проникают внутрь через горизонт. Можно сказать, что черная дыра все поглощает и ничего не выпускает. По этой причине и родился термин «черная дыра», предложенный в 1967 американским физиком Джоном Арчибальдом Уилером.

Формирование черных дыр.

Самый очевидный путь образования черной дыры – коллапс ядра массивной звезды. Пока в недрах звезды не истощился запас ядерного топлива, ее равновесие поддерживается за счет термоядерных реакций (превращение водорода в гелий, затем в углерод, и т.д., вплоть до железа у наиболее массивных звезд). Выделяющееся при этом тепло компенсирует потерю энергии, уходящей от звезды с ее излучением и звездным ветром. Термоядерные реакции поддерживают высокое давление в недрах звезды, препятствуя ее сжатию под действием собственной гравитации. Однако со временем ядерное топливо истощается и звезда начинает сжиматься.

Наиболее быстро сжимается ядро звезды, при этом оно сильно разогревается (его гравитационная энергия переходит в тепло) и нагревает окружающую его оболочку. В итоге звезда теряет свои наружные слои в виде медленно расширяющейся планетарной туманности или катастрофически сброшенной оболочки сверхновой. А судьба сжимающегося ядра зависит от его массы. Расчеты показывают, что если масса ядра звезды не превосходит трех масс Солнца, то она «выигрывает битву с гравитацией»: его сжатие будет остановлено давлением вырожденного вещества, и звезда превратится в белый карлик или нейтронную звезду. Но если масса ядра звезды более трех солнечных, то уже ничто не сможет остановить его катастрофический коллапс, и оно быстро уйдет под горизонт событий, став черной дырой. Как следует из формулы для rg, черная дыра с массой 3 солнечных имеет гравитационный радиус 8,8 км.

Астрономические наблюдения хорошо согласуются с этими расчетами: все компоненты двойных звездных систем, проявляющие свойства черных дыр (в 2005 их известно около 20), имеют массы от 4 до 16 масс Солнца. Теория звездной эволюции указывает, что за 12 млрд. лет существования нашей Галактики, содержащей порядка 100 млрд. звезд, в результате коллапса наиболее массивных из них должно было образоваться несколько десятков миллионов черных дыр. К тому же, черные дыры очень большой массы (от миллионов до миллиардов масс Солнца)могут находиться в ядрах крупных галактик, в том числе, и нашей. Об этом свидетельствуют астрономические наблюдения, хотя пути формирования этих гигантских черных дыр не вполне ясны.

Если в нашу эпоху высокая плотность вещества, необходимая для рождения черной дыры, может возникнуть лишь в сжимающихся ядрах массивных звезд, то в далеком прошлом, сразу после Большого взрыва, с которого около 14 млрд. лет назад началось расширение Вселенной, высокая плотность материи была повсюду. Поэтому небольшие флуктуации плотности в ту эпоху могли приводить к рождению черных дыр любой массы, в том числе и малой. Но самые маленькие из них в силу квантовых эффектов должны были испариться, потеряв свою массу в виде излучения и потоков частиц. «Первичные черные дыры» с массой более 1012 кг могли сохраниться до наших дней. Самые мелкие из них, массой 1012 кг (как у небольшого астероида), должны иметь размер порядка 10–15 м (как у протона или нейтрона).

Наконец, существует гипотетическая возможность рождения микроскопических черных дыр при взаимных соударениях быстрых элементарных частиц. Таков один из прогнозов теории струн – одной из конкурирующих сейчас физических теорий строения материи. Теория струн предсказывает, что пространство имеет более трех измерений. Гравитация, в отличие от прочих сил, должна распространяться по всем этим измерениям и поэтому существенно усиливаться на коротких расстояниях. При мощном столкновении двух частиц (например, протонов) они могут сжаться достаточно сильно, чтобы родилась микроскопическая черная дыра. После этого она почти мгновенно разрушится («испарится»), но наблюдение за этим процессом представляет для физики большой интерес, поскольку, испаряясь, дыра будет испускать все существующие в природе виды частиц. Если гипотеза теории струн верна, то рождение таких черных дыр может происходить при столкновениях энергичных частиц космических лучей с атомами земной атмосферы, а также в наиболее мощных ускорителях элементарных частиц.

Свойства черных дыр.

Вблизи черной дыры напряженность гравитационного поля так велика, что физические процессы там можно описывать только с помощью релятивистской теории тяготения. Согласно ОТО, пространство и время искривляются гравитационным полем массивных тел, причем наибольшее искривление происходит вблизи черных дыр. Когда физики говорят об интервалах времени и пространства, они имеют в виду числа, считанные с каких-либо физических часов и линеек. Например, роль часов может играть молекула с определенной частотой колебаний, количество которых между двумя событиями можно называть «интервалом времени».

Важно, что гравитация действует на все физические системы одинаково: все часы показывают, что время замедляется, а все линейки, что пространство растягивается вблизи черной дыры. Это означает, что черная дыра искривляет вокруг себя геометрию пространства и времени. Вдали от черной дыры это искривление мало, а вблизи так велико, что лучи света могут двигаться вокруг нее по окружности. Вдали от черной дыры ее поле тяготения в точности описывается теорией Ньютона для тела такой же массы, но вблизи гравитация становится значительно сильнее, чем предсказывает ньютонова теория.

Если бы можно было наблюдать в телескоп за звездой в момент ее превращения в черную дыру, то сначала было бы видно, как звезда все быстрее и быстрее сжимается, но по мере приближения ее поверхности к гравитационному радиусу сжатие начнет замедляться, пока не остановится совсем. При этом приходящий от звезды свет будет слабеть и краснеть пока окончательно не потухнет. Это происходит потому, что, преодолевая силу тяжести, фотоны теряют энергию и им требуется все больше времени, чтобы дойти до нас. Когда поверхность звезды достигнет гравитационного радиуса, покинувшему ее свету потребуется бесконечное время, чтобы достичь любого наблюдателя, даже расположенного сравнительно близко к звезде (и при этом фотоны полностью потеряют свою энергию). Следовательно, мы никогда не дождемся этого момента и, тем более, не увидим того, что происходит со звездой под горизонтом событий, но теоретически этот процесс исследовать можно.

Расчет идеализированного сферического коллапса показывает, что за короткое время вещество под горизонтом событий сжимается в точку, где достигаются бесконечно большие значения плотности и тяготения. Такую точку называют «сингулярностью». Более того, математический анализ показывает, что если возник горизонт событий, то даже несферический коллапс приводит к сингулярности. Однако, все это верно лишь в том случае, если общая теория относительности применима вплоть до очень малых пространственных масштабов, в чем пока нет уверенности. В микромире действуют квантовые законы, а квантовая теория гравитации еще не создана. Ясно, что квантовые эффекты не могут остановить сжатие звезды в черную дыру, а вот предотвратить появление сингулярности они могли бы.

Изучая фундаментальные свойства материи и пространства-времени, физики считают исследование черных дыр одним из важнейших направлений, поскольку вблизи черных дыр проявляются скрытые свойства гравитации. Для поведения вещества и излучения в слабых гравитационных полях различные теории тяготения дают почти неразличимые прогнозы, однако в сильных полях, характерных для черных дыр, предсказания различных теорий существенно расходятся, что дает ключ к выявлению лучшей среди них. В рамках наиболее популярной сейчас теории гравитации – ОТО Эйнштейна – свойства черных дыр изучены весьма подробно. Вот некоторые важнейшие из них:

1) Вблизи черной дыры время течет медленнее, чем вдали от нее. Если удаленный наблюдатель бросит в сторону черной дыры зажженный фонарь, то увидит, как фонарь будет падать все быстрее и быстрее, но затем, приближаясь к поверхности Шварцшильда, начнет замедляться, а его свет будет тускнеть и краснеть (поскольку замедлится темп колебания всех его атомов и молекул). С точки зрения далекого наблюдателя фонарь практически остановится и станет невидим, так и не сумев пересечь поверхность черной дыры. Но если бы наблюдатель сам прыгнул туда вместе с фонарем, то он за короткое время пересек бы поверхность Шварцшильда и упал к центру черной дыры, будучи при этом разорван ее мощными приливными гравитационными силами, возникающими из-за разницы притяжения на разных расстояниях от центра.

2) Каким бы сложным ни было исходное тело, после его сжатия в черную дыру внешний наблюдатель может определить только три его параметра: полную массу, момент импульса (связанный с вращением) и электрический заряд. Все остальные особенности тела (форма, распределение плотности, химический состав и т.д.)в ходе коллапса «стираются». То, что для стороннего наблюдателя структура черной дыры выглядит чрезвычайно простой, Джон Уилер выразил шутливым утверждением: «Черная дыра не имеет волос».

В процессе коллапса звезды в черную дыру за малую долю секунды (по часам удаленного наблюдателя) все ее внешние особенности, связанные с исходной неоднородностью, излучаются в виде гравитационных и электромагнитных волн. Образовавшаяся стационарная черная дыра «забывает» всю информацию об исходной звезде, кроме трех величин: полной массы, момента импульса (связанного с вращением) и электрического заряда. Изучая черную дыру, уже невозможно узнать, состояла ли исходная звезда из вещества или антивещества, была ли она вытянутой или сплюснутой и т.п. В реальных астрофизических условиях заряженная черная дыра будет притягивать к себе из межзвездной среды частицы противоположного знака, и ее заряд быстро станет нулевым. Оставшийся стационарный объект либо будет невращающейся «шварцшильдовой черной дырой», которая характеризуется только массой, либо вращающейся «керровской черной дырой», которая характеризуется массой и моментом импульса.

3) Если исходное тело вращалось, то вокруг черной дыры сохраняется «вихревое» гравитационное поле, увлекающее все соседние тела во вращательное движение вокруг нее. Поле тяготения вращающейся черной дыры называют полем Керра (математик Рой Керр в 1963 нашел решение соответствующих уравнений). Этот эффект характерен не только для черной дыры, но для любого вращающегося тела, даже для Земли. По этой причине размещенный на искусственном спутнике Земли свободно вращающийся гироскоп испытывает медленную прецессию относительно далеких звезд. Вблизи Земли этот эффект едва заметен, но вблизи черной дыры он выражен гораздо сильнее: по скорости прецессии гироскопа можно измерить момент импульса черной дыры, хотя сама она не видна.

Чем ближе мы подходим к горизонту черной дыры, тем сильнее становится эффект увлечения «вихревым полем». Прежде чем достичь горизонта, мы окажемся на поверхности, где увлечение становится настолько сильным, что ни один наблюдатель не может оставаться неподвижным (т. е. быть «статическим») относительно далеких звезд. На этой поверхности (называемой пределом статичности) и внутри нее все объекты должны двигаться по орбите вокруг черной дыры в том же направлении, в котором вращается сама дыра. Независимо от того, какую мощность развивают его реактивные двигатели, наблюдатель внутри предела статичности никогда не сможет остановить свое вращательное движение относительно далеких звезд.

Предел статичности всюду лежит вне горизонта и соприкасается с ним лишь в двух точках, там, где они оба пересекаются с осью вращения черной дыры. Область пространства-времени, расположенная между горизонтом и пределом статичности, называется эргосферой. Объект, попавший в эргосферу, еще может вырваться наружу. Поэтому, хотя черная дыра «все съедает и ничего не отпускает», тем не менее, возможен обмен энергией между ней и внешним пространством. Например, пролетающие через эргосферу частицы или кванты могут уносить энергию ее вращения.

4) Все вещество внутри горизонта событий черной дыры непременно падает к ее центру и образует сингулярность с бесконечно большой плотностью. Английский физик Стивен Хоукинг определяет сингулярность как «место, где разрушается классическая концепция пространства и времени так же, как и все известные законы физики, поскольку все они формулируются на основе классического пространства-времени».

5) Кроме этого С.Хоукинг открыл возможность очень медленного самопроизвольного квантового «испарения» черных дыр. В 1974 он доказал, что черные дыры (не только вращающиеся, но любые) могут испускать вещество и излучение, однако заметно это будет лишь в том случае, если масса самой дыры относительно невелика. Мощное гравитационное поле вблизи черной дыры должно рождать пары частица-античастица. Одна из частиц каждой пары поглощается дырой, а вторая испускается наружу. Например, черная дыра с массой 1012 кг должна вести себя как тело с температурой 1011 К, излучающее очень жесткие гамма-кванты и частицы. Идея об «испарении» черных дыр полностью противоречит классическому представлению о них как о телах, не способных излучать.

Источник: www.krugosvet.ru

Озарение Джона Мичелла

Имя Джона Мичелла, физика, астронома и геолога, профессора Кембриджского университета и пастора англиканской церкви, совершенно незаслуженно затерялось среди звезд английской науки XVIII века. Мичелл заложил основы сейсмологии — науки о землетрясениях, выполнил превосходное исследование магнетизма и задолго до Кулона изобрел крутильные весы, которые использовал для гравиметрических измерений. В 1783 году он попытался объединить два великих творения Ньютона — механику и оптику. Ньютон считал свет потоком мельчайших частиц. Мичелл предположил, что световые корпускулы, как и обычная материя, подчиняются законам механики. Следствие из этой гипотезы оказалось весьма нетривиальным — небесные тела могут превратиться в ловушки для света.

Как рассуждал Мичелл? Пушечное ядро, выстреленное с поверхности планеты, полностью преодолеет ее притяжение, лишь если его начальная скорость превысит значение, называемое теперь второй космической скоростью и скоростью убегания. Если гравитация планеты столь сильна, что скорость убегания превышает скорость света, выпущенные в зенит световые корпускулы не смогут уйти в бесконечность. Это же произойдет и с отраженным светом. Следовательно, для очень удаленного наблюдателя планета окажется невидимой. Мичелл вычислил критическое значение радиуса такой планеты Rкр в зависимости от ее массы М, приведенной к массе нашего Солнца Ms: Rкр = 3 км*M/Ms.

Джон Мичелл верил своим формулам и предполагал, что глубины космоса скрывают множество звезд, которые с Земли нельзя разглядеть ни в один телескоп. Позже к такому же выводу пришел великий французский математик, астроном и физик Пьер Симон Лаплас, включивший его и в первое (1796), и во второе (1799) издания своего «Изложения системы мира». А вот третье издание вышло в свет в 1808-м, когда большинство физиков уже считали свет колебаниями эфира. Существование «невидимых» звезд противоречило волновой теории света, и Лаплас счел за лучшее о них не упоминать. В последующие времена эту идею считали курьезом, достойным изложения лишь в трудах по истории физики.

Модель Шварцшильда

В ноябре 1915 года Альберт Эйнштейн опубликовал теорию гравитации, которую он назвал общей теорией относительности (ОТО). Эта работа сразу же нашла благодарного читателя в лице его коллеги по Берлинской академии наук Карла Шварцшильда. Именно Шварцшильд первым в мире применил ОТО для решения конкретной астрофизической задачи, расчета метрики пространства-времени вне и внутри невращающегося сферического тела (для конкретности будем называть его звездой).

Из вычислений Шварцшильда следует, что тяготение звезды не слишком искажает ньютоновскую структуру пространства и времени лишь в том случае, если ее радиус намного больше той самой величины, которую вычислил Джон Мичелл! Этот параметр сначала называли радиусом Шварцшильда, а сейчас именуют гравитационным радиусом. Согласно ОТО, тяготение не влияет на скорость света, но уменьшает частоту световых колебаний в той же пропорции, в которой замедляет время. Если радиус звезды в 4 раза превосходит гравитационный радиус, то поток времени на ее поверхности замедляется на 15%, а пространство приобретает ощутимую кривизну. При двукратном превышении оно искривляется сильнее, а время замедляет свой бег уже на 41%. При достижении гравитационного радиуса время на поверхности звезды полностью останавливается (все частоты обнуляются, излучение замораживается, и звезда гаснет), но кривизна пространства все еще конечна. Вдали от светила геометрия по‑прежнему остается евклидовой, да и время не меняет своей скорости.

Несмотря на то, что значения гравитационного радиуса у Мичелла и Шварцшильда совпадают, сами модели не имеют ничего общего. У Мичелла пространство и время не изменяются, а свет замедляется. Звезда, размеры которой меньше ее гравитационного радиуса, продолжает светить, однако видна она только не слишком удаленному наблюдателю. У Шварцшильда же скорость света абсолютна, но структура пространства и времени зависит от тяготения. Провалившаяся под гравитационный радиус звезда исчезает для любого наблюдателя, где бы он ни находился (точнее, ее можно обнаружить по гравитационным эффектам, но отнюдь не по излучению).

От неверия к утверждению

Шварцшильд и его современники полагали, что столь странные космические объекты в природе не существуют. Сам Эйнштейн не только придерживался этой точки зрения, но и ошибочно считал, что ему удалось обосновать свое мнение математически.

В 1930-е годы молодой индийский астрофизик Чандрасекар доказал, что истратившая ядерное топливо звезда сбрасывает оболочку и превращается в медленно остывающий белый карлик лишь в том случае, если ее масса меньше 1,4 масс Солнца. Вскоре американец Фриц Цвикки догадался, что при взрывах сверхновых возникают чрезвычайно плотные тела из нейтронной материи; позднее к этому же выводу пришел и Лев Ландау. После работ Чандрасекара было очевидно, что подобную эволюцию могут претерпеть лишь звезды с массой больше 1,4 масс Солнца. Поэтому возник естественный вопрос — существует ли верхний предел массы для сверхновых, которые оставляют после себя нейтронные звезды?

В конце 1930-х годов будущий отец американской атомной бомбы Роберт Оппенгеймер установил, что такой предел действительно имеется и не превышает нескольких солнечных масс. Дать более точную оценку тогда не было возможности; теперь известно, что массы нейтронных звезд обязаны находиться в интервале 1,5−3 Ms. Но даже из приблизительных вычислений Оппенгеймера и его аспиранта Джорджа Волкова следовало, что самые массивные потомки сверхновых не становятся нейтронными звездами, а переходят в какое-то другое состояние. В 1939 году Роберт Оппенгеймер и Хартланд Снайдер на идеализированной модели доказали, что массивная коллапсирующая звезда стягивается к своему гравитационному радиусу. Из их формул фактически следует, что звезда на этом не останавливается, однако соавторы воздержались от столь радикального вывода.

Окончательный ответ был найден во второй половине XX века усилиями целой плеяды блестящих физиков-теоретиков, в том числе и советских. Оказалось, что подобный коллапс всегда сжимает звезду «до упора», полностью разрушая ее вещество. В результате возникает сингулярность, «суперконцентрат» гравитационного поля, замкнутый в бесконечно малом объеме. (У неподвижной дыры это точка, у вращающейся — кольцо.) Кривизна пространства-времени и, следовательно, сила тяготения вблизи сингулярности стремятся к бесконечности. В конце 1967-го американец Джон Арчибальд Уилер первым назвал такой финал звездного коллапса черной дырой. Новый термин полюбился физикам и привел в восторг журналистов, которые разнесли его по всему миру (хотя французам он сначала не понравился, поскольку выражение trou noir наводило на сомнительные ассоциации).

Чернодырное излучение

Все предыдущие модели были построены исключительно на основе ОТО. Однако наш мир управляется законами квантовой механики, которые не обходят вниманием и черные дыры. Эти законы не позволяют считать центральную сингулярность математической точкой. В квантовом контексте ее поперечник задается длиной Планка-Уилера, приблизительно равной 10−33 сантиметра. В этой области обычное пространство перестает существовать. Принято считать, что центр дыры нафарширован разнообразными топологическими структурами, которые появляются и погибают в соответствии с квантовыми вероятностными закономерностями. Свойства подобного пузырящегося квазипространства, которое Уилер назвал квантовой пеной, еще мало изучены.

Наличие квантовой сингулярности имеет прямое отношение к судьбе материальных тел, падающих в глубь черной дыры. При приближении к центру дыры любой объект, изготовленный из ныне известных материалов, будет раздавлен и разорван приливными силами. Однако даже если будущие инженеры и технологи создадут какие-то сверхпрочные сплавы и композиты с невиданными ныне свойствами, они все равно обречены на исчезновение: ведь в зоне сингулярности нет ни привычного времени, ни привычного пространства.

Теперь рассмотрим в квантовомеханическую лупу горизонт дыры. Пустое пространство — физический вакуум — на самом деле отнюдь не пусто. Из-за квантовых флуктуаций различных полей в вакууме непрерывно рождается и погибает множество виртуальных частиц. Поскольку тяготение около горизонта весьма велико, его флуктуации создают чрезвычайно сильные гравитационные всплески. При разгоне в таких полях новорожденные «виртуалы» приобретают дополнительную энергию и подчас становятся нормальными долгоживущими частицами.

Виртуальные частицы всегда рождаются парами, которые движутся в противоположных направлениях (этого требует закон сохранения импульса). Если гравитационная флуктуация извлечет из вакуума пару частиц, может случиться так, что одна из них материализуется снаружи горизонта, а вторая (античастица первой) — внутри. «Внутренняя» частица провалится в дыру, а вот «внешняя» при благоприятных условиях может уйти. В результате дыра превращается в источник излучения и поэтому теряет энергию и, следовательно, массу. Поэтому черные дыры в принципе нестабильны.

Этот феномен называется эффектом Хокинга, в честь замечательного английского физика-теоретика, который его открыл в середине 1970-х годов. Стивен Хокинг, в частности, доказал, что горизонт черной дыры излучает фотоны точно так же, как и абсолютно черное тело, нагретое до температуры T = 0,5*10−7*Ms/M. Отсюда следует, что по мере похудания дыры ее температура возрастает, а «испарение», естественно, усиливается. Этот процесс чрезвычайно медленный, и время жизни дыры массы M составляет около 1065*(M/Ms)3 лет. Когда ее размер становится равным длине Планка-Уилера, дыра теряет стабильность и взрывается, выделяя ту же энергию, что и одновременный взрыв миллиона десятимегатонных водородных бомб. Любопытно, что масса дыры в момент ее исчезновения все еще довольно велика, 22 микрограмма. Согласно некоторым моделям, дыра не исчезает бесследно, а оставляет после себя стабильный реликт такой же массы, так называемый максимон.

Глубины космоса

Черные дыры не противоречат законам физики, но существуют ли они в природе? Совершенно строгих доказательств наличия в космосе хоть одного подобного объекта пока нет. Однако весьма вероятно, что в некоторых двойных системах источниками рентгеновского излучения являются черные дыры звездного происхождения. Это излучение должно возникать вследствие отсасывания атмосферы обычной звезды гравитационным полем дыры-соседки. Газ во время движения к горизонту событий сильно нагревается и испускает рентгеновские кванты. Не меньше двух десятков рентгеновских источников сейчас считаются подходящими кандидатами на роль черных дыр. Более того, данные звездной статистики позволяют предположить, что только в нашей Галактике существует около десяти миллионов дыр звездного происхождения.

Черные дыры могут формироваться и в процессе гравитационного сгущения вещества в галактических ядрах. Так возникают исполинские дыры с массой в миллионы и миллиарды солнечных, которые, по всей вероятности, имеются во многих галактиках. Судя по всему, в закрытом пылевыми облаками центре Млечного Пути прячется дыра с массой 3−4 миллиона масс Солнца.

Стивен Хокинг пришел к выводу, что черные дыры произвольной массы могли рождаться и сразу после Большого Взрыва, давшего начало нашей Вселенной. Первичные дыры массой до миллиарда тонн уже испарились, но более тяжелые могут и сейчас скрываться в глубинах космоса и в свой срок устраивать космический фейерверк в виде мощнейших вспышек гамма-излучения. Однако до сих пор такие взрывы ни разу не наблюдались.

Фабрика черных дыр

А нельзя ли разогнать частицы в ускорителе до столь высокой энергии, чтобы их столкновение породило черную дыру? На первый взгляд, эта идея просто безумна — взрыв дыры уничтожит все живое на Земле. К тому же она технически неосуществима. Если минимальная масса дыры действительно равна 22 микрограммам, то в энергетических единицах это 1028 электронвольт. Этот порог на 15 порядков превышает возможности самого мощного в мире ускорителя, Большого адронного коллайдера (БАК), который будет запущен в ЦЕРНе в 2007 году.

Однако не исключено, что стандартная оценка минимальной массы дыры значительно завышена. Во всяком случае, так утверждают физики, разрабатывающие теорию суперструн, которая включает в себя и квантовую теорию гравитации (правда, далеко не завершенную). Согласно этой теории, пространство имеет не три измерения, а не менее девяти. Мы не замечаем дополнительных измерений, поскольку они закольцованы в столь малых масштабах, что наши приборы их не воспринимают. Однако гравитация вездесуща, она проникает и в скрытые измерения. В трехмерном пространстве сила тяготения обратно пропорциональна квадрату расстояния, а в девятимерном — восьмой степени. Поэтому в многомерном мире напряженность гравитационного поля при уменьшении дистанции возрастает намного быстрее, нежели в трехмерном. В этом случае планковская длина многократно увеличивается, а минимальная масса дыры резко падает.

Теория струн предсказывает, что в девятимерном пространстве может родиться черная дыра с массой всего лишь в 10−20 г. Примерно такова же и расчетная релятивистская масса протонов, разогнанных в церновском суперускорителе. Согласно наиболее оптимистическому сценарию, он сможет ежесекундно производить по одной дыре, которая проживет около 10−26 секунд. В процессе ее испарения будут рождаться всевозможные элементарные частицы, которые несложно зарегистрировать. Исчезновение дыры приведет к выделению энергии, которой не хватит даже для того, чтобы нагреть один микрограмм воды на тысячную градуса. Поэтому есть надежда, что БАК превратится в фабрику безвредных черных дыр. Если эти модели верны, то такие дыры смогут регистрировать и орбитальные детекторы космических лучей нового поколения.

Все вышеописанное относится к неподвижным черным дырам. Но существуют и вращающиеся дыры, обладающие букетом интереснейших свойств. Результаты теоретического анализа чернодырного излучения привели также к серьезному переосмыслению понятия энтропии, которое заслуживает отдельного разговора. Но об этом — в следующем номере.

Источник: www.PopMech.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.