Черные дыры просто о сложном


10 апреля группа исследователей проекта «Телескоп горизонта событий» показала первое в истории изображение черной дыры. Косвенно существование этих объектов, которые поглощают даже свет, подтверждали и раньше, но теперь их впервые показали наглядно. «Медуза» попросила приглашенного профессора лаборатории фундаментальных и прикладных исследований релятивистских объектов Вселенной МФТИ Станислава Бабака и главу лаборатории Юрия Ковалева ответить на распространенные вопросы о черных дырах.

Что представляют собой черные дыры? Что такое горизонт событий?

Черные дыры — это наиболее компактные и самые простые объекты во Вселенной. Они описываются всего двумя параметрами — массой и скоростью вращения. С точки зрения астрофизики черные дыры — это конечная стадия эволюции звезд. Например, тяжелая звезда эволюционирует, взрывается, и ее центр сжимается в черную дыру.


ризонт событий черной дыры — это ее условная поверхность, оболочка, никакой физической поверхности нет, это просто некоторое расстояние от центра. Это то место, попадая в которое объект или свет уже не сможет выбраться обратно, так как здесь начинается очень сильная гравитация, которая не выпускает попавшие в него объекты. Это можно объяснить математически: выход из горизонта событий означает движение в обратную сторону по времени, что невозможно с точки зрения физики. 

Почему черные дыры так называются? Разве они могут быть какого-то цвета?

Одно из первых названий черных дыр — коллапсары. Название «черные дыры» было придумано в XX веке журналистами и подхвачено одним из великих ученых того времени, американским физиком-теоретиком Джоном Уиллером. Почему именно черные? Это такой объект, который не может ничего излучать, свет оттуда не выходит. Хотя и это не совсем правда: черные дыры могут излучать так называемое излучение Хокинга (испарение черных дыр), но на классическом уровне если свет в них попадает, то ничто оттуда не выходит, именно поэтому их называют «черные дыры» — их никак нельзя увидеть. Мы можем наблюдать черную дыру, только если вокруг нее есть какая-то материя: газ или соседняя звезда, с которой черная дыра стаскивает оболочку. Благодаря гравитационным волнам мы можем «увидеть» две сливающиеся черные дыры. Фактически у черных дыр нет никакого цвета, это условное название, обозначающее, что все в нее падает и ничего не выходит.


Откуда берутся черные дыры? 

Это зависит от их массы. Черные дыры бывают небольшими (несколько масс нашего Солнца), а могут быть очень массивными (миллионы масс Солнца). Размер черных дыр пропорционален их массе.

Черные дыры с околосолнечной массой могли зародиться в ранней Вселенной. Подобная черная дыра может образоваться путем сжимания звезды в 20–60 раз больше нашего Солнца, которая взрывается в конце жизни, а то, что останется в центре, сожмется до размеров черной дыры, сколлапсирует. Массы таких черных дыр ограниченны — больше 5 солнечных масс, но меньше 50–60 солнечных масс. 

Пример массивной черной дыры показали 10 апреля благодаря «Телескопу горизонта событий», который сфотографировал объект в центре галактики M87 с массой в миллиарды солнечных. В центре нашей Галактики тоже есть подобная черная дыра, ее масса — 4 миллиона солнечных. Эта черная дыра образовалась вместе с Галактикой — либо от гигантского газового облака, которое сжалось и образовало черную дыру, либо это было первое поколение тяжелых звезд, которые образовывали первые черные дыры, те, в свою очередь, сливались и формировали черные дыры размером в тысячу солнечных масс. Основной механизм роста массы черных дыр в центре галактик — заглатывание газа из окружающей среды. Чем больше «бросаешь» в черную дыру, тем больше она растет. Более того, если «бросать» газ или частицы в черную дыру в одном направлении, она еще будет и раскручиваться.  


Какой они бывают формы? Если в черную дыру все проваливается, значит, у нее есть дно?

Черные дыры могут быть двух форм: если она почти не вращается — сферической, а если вращается быстрее — сфероидальной (сплющенная сфера). Как правило, все черные дыры вращаются — какие-то быстрее, какие-то медленнее. Дна в черной дыре нет. Мы не до конца понимаем, что конкретно происходит в самом центре, где законы физики перестают работать. Общая теория относительности говорит нам, что кривизна пространства в центре черной дыры бесконечна. Но это означает только, что теория в центре черной дыры не работает. Поэтому, например, попытки создать квантовую теорию гравитации — это попытки ответить, что может быть в самом центре черной дыры. Пока простейший ответ — это бесконечность, сингулярность. Но в природе нет ничего бесконечного, значит, пока в нашем уравнении что-то не так.  

Для чего изучают черные дыры?

Достаточно большое количество вопросов о природе Вселенной основывается на понятии черных дыр, поэтому ученым важно подтвердить экспериментально это представление, чтобы сказать: «Да, мы не занимаемся ерундой, эти теории справедливы, наши построения верны, и мы можем двигаться дальше в изучении Вселенной с использованием такого теоретического понятия, как черная дыра». Можно вспомнить открытие гравитационных волн — слияние двух черных дыр массой 20–30 масс Солнца. Это тоже было косвенное доказательство существования черных дыр. Объявленное 10 апреля обнаружение тени черной дыры очень важно, потому что оно подтверждает самосогласованность наших теорий. Предсказание было такое: если в центре галактики Дева А (или Мессье 87) есть черная дыра массой около 6 миллиардов масс Солнца, тогда мы увидим фотонное кольцо из света как раз такого размера, как удалось измерить. 


Следующий шаг — обновление общей теории относительности Эйнштейна на основе данных о сильном гравитационном поле массивной черной дыры. Для этого центр галактики М87, где было получено первое изображение, не очень подходит: нужна значительно более высокая точность измерений. Массу с большой точностью ученые смогли определить только для черной дыры в центре нашей Галактики — мы называем этот объект Стрелец А*.

Все обратили внимание, что группа «Телескопа горизонта событий» практически ни слова не сказала про центр нашей Галактики. Дело в том, что Стрелец А* довольно недружелюбно к нам настроен по объективным физическим причинам. Наша центральная черная дыра имеет достаточно маленький горизонт событий. Соответственно, взрывные процессы там происходят очень быстро — в пределах или менее одного часа. «Телескопу горизонта событий» сложно восстановить картинку, когда черная дыра так быстро меняется. Это можно сравнить с попытками родителей сфотографировать своего постоянно крутящегося ребенка — картинка все время получается смазанной. Ученым необходимо научиться восстанавливать изображение в центре нашей Галактики за очень короткое время. Пока таких инструментов нет.


Сколько уже открыто черных дыр?

Объектов, которые ведут себя как одиночные черные дыры (тянут на себя материю и газ), очень много. Что касается двойных черных дыр, если верить каталогу LIGO и VIRGO, то их всего 10 пар. 

Черные дыры действительно бесконечно расширяются, поглощая все на своем пути?

Нет. Если в черную дыру специально бросать объекты, масса будет увеличиваться, но в нее очень сложно попасть. Черная дыра при этом будет оставаться очень маленькой. Звездам и газу, которые вращаются вокруг черной дыры, ничего не угрожает — нужно быть действительно очень близко к черной дыре, чтобы она начала их поглощать. 

Что будет, если попасть в черную дыру?

Когда падаешь в черную дыру, с одной стороны, тебя начинает сплющивать, с другой — очень сильно растягивать. Есть известная задача: что случится с космонавтом, который падает в черную дыру, — сначала оторвет голову или сплющит? Правильный ответ — голову оторвет вначале. При проходе через горизонт событий пространство искривляется, и кривизна пространства быстро растет, пока космонавт сам не станет сингулярностью (исчезнет). 

Могут ли две черные дыры столкнуться? Что тогда произойдет?

Две черные дыры очень тяжело столкнуть. Для этого они должны быть на очень близком расстоянии друг к другу. Один из способов — двойные звезды, которые обе в результате «старения» превратились в черные дыры, тогда они будут с самого начала близко друг от друга. 


Чтобы две массивные черные дыры в сталкивающихся галактиках оказались близко, нужны миллиарды лет. И они должны быть очень близко, чтобы гравитационное излучение стало таким, что они сольются в течение нескольких десятков лет. В результате слияния черных дыр получается опять же черная дыра с большей массой и больше по размерам. 

Источник: meduza.io

Как образуются черные дыры?

Эти монстры возникают как фениксы, возрождаясь из пепла мертвых звезд. Известно, что в звездах происходят реакции термоядерного синтеза — слияние ядер легких атомов в более тяжелые, с выделением большого количества энергии. Так вот, когда звезды достигают конца своей жизни, запасы водорода, который они превращают в гелий, почти полностью истощаются. После водорода они начинают сжигать гелий и так далее, превращая оставшиеся атомы в еще более тяжелые элементы, вплоть до железа, чье слияние уже не дает достаточно энергии для поддержания внешних слоев звезды. Вследствие этого верхние слои рушатся внутрь и взрываются — этот взрыв называется вспышкой сверхновой.

Теоретически, такой взрыв может сжать массу вещества достаточно, чтобы ее радиус стал меньше или равен радиусу Шварцшильда, и она превратилась в черную дыру. Чтобы вы понимали, типичная нейтронная звезда (то, что обычно остается от звезды после вспышки сверхновой) имеет радиус Шварцшильда около 1/3 от ее собственного радиуса.


После образования черная дыра продолжает расти, поглощая материю из окружающего пространства. Поглощение звезд и слияние с другими черными дырами может привести к образованию сверхмассивной черной дыры. Согласно общему пониманию, такие объекты существуют в центрах большинства галактик.

Особенности черной дыры

Черная дыра выглядит очень необычно, лишь отдаленно напоминая некую планету, имеющую странные изогнутые кольца. Однако без аккреционного диска, вращающегося вокруг нее, мы бы ее даже не увидели. Давайте посмотрим какие у нее есть внешние особенности.

Аккрецонный диск

Кольцевая структура аккреционного диска, состоит из вещества, падающего на черную дыру, оно разогрето и поэтому светится.

Фотонное кольцо

Фотонное кольцо (или орбита фотона) — это свет, который несколько раз сгибался вокруг черной дыры, прежде чем ускользнуть. Он имеет много слоев, которые становятся все тусклее и тусклее, это происходит потому, что с каждым новым витком свету сложнее вырваться за пределы этого монстра.

Эффект Доплера

На приведенном выше изображении левая сторона аккреционного диска выглядит ярче, чем правая из-за Эффекта Доплера, который обусловлен огромной орбитальной скоростью.

Гравитационное линзирование

Мы видим изогнутый аккреционный диск (сверху и снизу), потому что гравитация отклоняет направление света.

Как мы узнали о существовании этих космических монстров?


Уже обнаружено около тысячи объектов, которые причисляются к черным дырам. Всего же предполагается существование десятков миллионов таких объектов. Опишем коротко, как человечество пришло к таким открытиям.

Ранние гипотезы

Гипотеза о существовании такого массивного объекта была впервые предложена в 1783 году английским геологом Джоном Митчеллом в письме Генри Кавендишу из Британского королевского общества. В то время теория гравитации Ньютона и идея второй космической скорости были хорошо известны. По оценкам Митчелла, тело с радиусом в 500 раз больше солнечного и с такой же плотностью будет иметь на своей поверхности вторую космическую скорость, равную скорости света, и поэтому будет невидимым.

В 1796 году французский математик Пьер-Симон Лаплас предложил ту же идею в первом и втором изданиях своей книги «Exposition du système du monde». Однако она не привлекла большого внимания в 19 веке и исчезла из последующих изданий его книги, так как в то время свет считался безмассовой волной, не подверженной влиянию гравитации.

Общая теория относительности

В 1915 году Альберт Эйнштейн разработал общую теорию относительности, ранее показав, что гравитация влияет на движение света. Через несколько месяцев Шварцшильд дал решение для уравнений Эйнштейна (Метрика Шварцшильда), которое достаточно точно описывает гравитационное поле уединённой невращающейся и незаряженной чёрной дыры.


В 1939 году Роберт Оппенгеймер и Хартланд Снайдер предсказали, что массивные звезды могут подвергнуться резкому гравитационному коллапсу. Однако черные дыры (как гипотетические объекты) не были предметом большого интереса до конца 1960-х годов. Интерес к ним ожил в 1967 году с открытием пульсаров.

Открытие Лебедя X-1 (Cygnus X-1)

Черная дыра: Лебедь X-1Астрономы из Военно-морской исследовательской лаборатории США обнаружили Лебедь Х-1 в 1964 году. Он был дополнительно исследован в 1970-х годах, когда был запущен рентгеновский спутник Ухуру (Uhuru). Когда за объектом начали наблюдать, обнаружилось, что его не было видно ни на одной плоскости электромагнитного спектра, кроме рентгеновских лучей.


лее того, рентгеновские лучи мерцали по интенсивности каждую миллисекунду. Затем астрономы переключились на его ближайшего соседа — звезду HDE 226868, у которого была замечена орбита, указывающая на то, что он является частью двойной системы. Однако странность заключалась в том, что ни одна звезда-компаньон не находилась в непосредственной близости от HDE 226868. Чтобы HDE оставался на своей орбите, его спутнику требовалась масса, превышающая таковую у типичного белого карлика или нейтронной звезды. Более того, это странное мерцание могло возникнуть только из-за небольшого объекта, который мог претерпевать такие быстрые изменения. Озадаченные, ученые смотрели на свои предыдущие наблюдения и теории, чтобы попытаться определить, что это за объект, но были шокированы, когда нашли свое решение в теории, которую многие считали просто математической фантазией.

Лебедь X-1 расположен на расстоянии 6 070 световых лет от нас, имеет диаметр всего около 32-64 км, массу около 14,8 солнечных и скорость вращения 800 оборотов в секунду. Все эти данные соответствуют тому, какой должна быть черная дыра, если бы она находилась в непосредственной близости от HDE 226868. Эти два объекта расположены на расстоянии 0,2 а. е. друг от друга, что позволяет Лебедю откачивать материал из своего спутника, придавая ему форму яйца. Было замечено, что материал входит в Лебедя, но в конечном итоге он значительно смещается и «уходит» в сингулярности.

Сингулярность — это точка за горизонтом событий, где, согласно общей теории относительности, пространство-время имеет бесконечную кривизну. В этой области пространство и время перестают существовать в том виде, как мы их знаем, а потому к ней не применимы действующие законы физики. Пространство за горизонтом событий особенно в том смысле, что сингулярность является буквально единственным возможным будущим, поэтому все частицы должны двигаться к нему.

Обнаружение

Несмотря на невидимую внутренность, присутствие таких массивных объектов можно обнаружить по их взаимодействию с окружающими объектами, а также светом и другим электромагнитным излучениям (гравитационное линзирование).

Отличить черную дыру от другого объекта можно по соотношению размера к массе, для этого нужно сравнить ее физический радиус с гравитационным радиусом. Массу и расположение черных дыр рассчитывают используя данные о перемещении звезд.

Какая самая большая черная дыра?

Самая большая черная дыра, присутствующая в нашей галактике — это Стрелец A*, ее масса в 4 миллиона раз больше, чем у Солнца. Она находится на расстоянии 25900 световых лет от Земли и должна иметь радиус не менее 12,7 ± 1,1 млн км.

Черная дыра в галактике Андромеды (M81)

Галактика Андромеды, расположенная на расстоянии 2,5 миллиона световых лет от нас, имеет черную дыру, которая составляет 110–230 миллионов масс Солнца. Этот объект значительно больше Стрельца А* в Млечном Пути.

M87*

Измерения массы, опубликованные телескопом Event Horizon в 2019 году, предполагают, что M87* — самая большая сверхмассивная черная дыра в окрестностях Млечного Пути. Ее масса около 6,5 млрд M☉, она расположена на расстоянии 53,5 млн световых лет от Земли.

Вращающийся диск с ионизированным газом окружает черную дыру и приблизительно перпендикулярен релятивистской струе, испускаемой М87*. Диск вращается со скоростью примерно до 1000 км/с и имеет максимальный диаметр 0,12 парсек (25 000 а.е.). Для сравнения, в среднем Плутон находится в 39 астрономических единицах (0,00019 парсек) от Солнца. M87* — это первая и пока единственная черная дыра, изображение которой мы смогли получить, оно было опубликовано 10 апреля 2019 года.

В квазарах

Черные дыры в квазарах

Массы черных дыр в квазарах можно оценить косвенными методами, что предполагает значительную неточность. Квазар TON 618 является примером объекта с чрезвычайно большой черной дырой, оцененной в 66 млрд солнечных масс. Другие примеры квазаров с оцененными массами черных дыр — APM 08279+5255, с массой 23 млрд M☉; S5 0014+81, с массой 40 миллиардов М☉.

Излучение

Предполагается, что черная дыра излучает разнообразные элементарные частицы, этот гипотетический процесс называется излучением Хокинга.

Излучение Хокинга

Понятие о чёрной дыре как объекте, который ничего не излучает, а может лишь поглощать материю, справедливо до тех пор, пока не учитываются квантовые эффекты. В квантовой теории поля физический вакуум наполнен постоянно рождающимися и исчезающими флуктуациями различных полей (можно сказать «виртуальными частицами»). В поле внешних сил динамика этих флуктуаций меняется, и если силы достаточно велики, прямо из вакуума могут рождаться пары частица-античастица. Такие процессы происходят и вблизи (но всё же снаружи) горизонта событий чёрной дыры. При этом возможно, что одна из частиц (неважно какая) падает внутрь чёрной дыры, а другая улетает и доступна для наблюдения.

Читайте также: Стивен Хокинг — биография

Излучение Хокинга является главным аргументом ученых относительно испарения небольших чёрных дыр, которые теоретически могут возникать в ходе экспериментов на БАК.

Как долго может существовать черная дыра?

Гипотетически срок жизни черной дыры зависит от ее массы, которую она теряет из-за излучения Хокинга. Интересно, что черные дыры с меньшей массой теряют ее быстрее, чем более крупные. Это потому, что кривизна, которую они создают в пространстве, является более высокой вокруг горизонта событий. Однако даже в этом случае, черные дыры живут очень и очень долго.

Например, для полного испарения черной дыры с массой Солнца потребуется 1067 лет. Для более крупных черных дыр во Вселенной это могло бы занять невероятные 10100 лет. Гипотетически, когда все звезды и планеты погибнут, черные дыры ещё будут существовать, и в конечном итоге исчезнут сами собой.

Источник: sci-news.ru

Появление черных дыр.

Самый очевидный путь образования черной дыры – коллапс ядра массивной звезды. Пока у звезды не закончилось топливо, ее равновесие поддерживается за счет термоядерных реакций (превращение водорода в гелий, затем в углерод, и т.д., вплоть до железа у наиболее массивных звезд). Выделяющееся при этом тепло компенсирует потерю энергии, уходящей от звезды с ее излучением и звездным ветром. Термоядерные реакции поддерживают высокое давление в недрах звезды, препятствуя ее сжатию под действием собственной гравитации. Однако со временем топливо истощается и звезда начинает сжиматься. И тогда на свет и появляется это маленькое (Ну или не совсем) чудо.

При этом, это все зависит от массы самой звезды. Небольших размеров, как наше солнце, не более трех солнечных масс, звезды оставляют после себя лишь маленький, грубо говоря, труп. Белый карлик. Так как «Выигрывают борьбу с гравитацией»: его сжатие будет остановлено давлением вырожденного вещества, и звезда превратится в белый карлик или нейтронную звезду.

Но у более массивных звезд уже ничто не может остановить катастрофичный коллапс ядра и оно сожмется настолько сильно, что пересечет радиус Шварцшильда (Радиус, до которого надо сжать любой объект, чтоб тот стал черной дырой, зависит от массы этого объекта), став черной дырой.

Так же, черные дыры могут появляться в центре галактик, когда так же происходит коллапс, только уже газа и звезд. Такие черные дыры являются сверхмассивными и имеют массу до 20 миллиардов солнц. (Масса нашего солнца — 1 983 000 000 000 000 000 000 000 000 000 кг).

Что такое черная дыра?

По сути, это даже не объект, а область пространства-времени, гравитация которой настолько велико, что покинуть её не могут даже объекты, движущиеся со скоростью света. Грубо говоря, это то место, откуда нельзя выбраться. Но так как мы уже знаем, что «Дыра» это лишь условное название, на деле это сферический объект, следует разобраться, из чего же она состоит. Логика подсказывает, что из того же, из чего и ядро звезды, а это — водород, гелий и остальные газы в небольшом кол-ве. Но, это не совсем так. На самом деле, никто и не знает, из чего состоит черная дыра, но точно не из привычного нам состояния этого вещества, ведь черная дыра это скорее не сгусток материи, а сгусток гравитации.

Так же, черная дыра состоит из частей:

  1. Фотонной сферы — это место, в котором фотоны под действием гравитации начинают крутится вокруг черной дыры, то есть выходить на орбиту. Если вы попадете в эту часть черной дыры, то заметите одно необычное явление — открыв глаза и посмотрев назад, вы сможете увидеть себя. Вы будете наблюдать себя как будто в ММО-РПГ, то есть от третьего лица.
  2. Горизонта событий — Чтож, если вы по своей глупости попали за горизонт событий, то поздравляю, вы обладатель счастливого путешествия в один конец. Это место, которое отделяет черную дыру от всей остальной вселенной, ведь за горизонтом событий притяжение черной дыры настолько сильно, что даже если вы наберете максимальную скорость во вселенной, а это скорость света (300 тысяч километров в секунду), то вы даже с такой скоростью не сможете уже пересечь горизонт событий, вас просто будет притягивать сильнее, и вашей скорости убегания будет недостаточно. Так, что вы должны просто расслабится и ждать своей участи. Весь путь до сингулярности вас будет сопровождать кромешная тьма. И даже если у вас будет фонарик который сможет светить ярче, чем самый яркий объект во вселенной — квазар, то вы ничего не увидите. Эту тьму уже невозможно развеять. Так же, если вы упали в сверхмассивную дыру, вам повезло так как вы сможете пересечь горизонт событий без последствий. Но если же, она является небольшой, то боюсь достичь его живым вы уже не сможете, так как приливные силы зависят от близости к сингулярности, центра черной дыры, а чем больше дыра, тем дальше горизонт событий от сингулярности, а значит и точка где приливные силы будут настолько сильными, что разорвут вас, находится то дальше, то ближе этого горизонта.
  3. Сингулярность это место, центр нашей черной дыры, и если честно никто понятия не имеет что это такое, и если говорить простым языком это — точка, находящаяся в пространстве-времени, через которую нет возможности ровно проложить геодезическую линию. Единственное что мы знаем, так это то, что в ней не действуют большинство законов физики. Здесь происходит искажение, а также разрыв пространства-времени. По сути, законы физики тут теряют логику. Существуют теории, что с помощью нее вполне возможно осуществить переход в другие миры. Это возможно сделать посредством скачка сквозь сингулярность. Именно здесь пересекаются слои Вселенной, образуя подобие под пространственного перехода. Он является соединением двух дыр – чёрной и белой. Это своеобразная машина времени, а сам факт перехода не вступает в противоречия с законами физики. Прыжки через сингулярность вращающейся чёрной дыры сделают реальными путешествия во времени в любых его направлениях. Так же, поскольку чёрная дыра окружена горизонтом событий, то сингулярность увидеть в обнажённом состоянии нельзя. Но всё-таки создают модели, с разной степенью реалистичности позволяющие это сделать.
Так черная дыра искажает свет который проходит рядом с ней.

Что будет если упасть прямо в черную дыру?

Если вы все таки решили полететь прямо к центру черной дыры то это самое глупое что вы могли придумать, сначала из далека вам это будет казаться каким-то абсолютно черным объектом, который искажает все сзади себя. Это происходит из-за гравитационного линзирования. Грубо говоря, Черная дыра просто искажает свет который летит рядом с ней.

Ну вот, вы уже прошли половину пути, и черная дыра становится уже не просто «кругом», а уже полноценным сферическим обьектом. И к тому же, искажение пространства вокруг нее все сильнее, и если бы за черной дырой стояла звезда, это было бы больше похоже на то, что вокруг черной дыры образовалась «звезда-пончик».

И тут, сценарий идет по двум путям — если черная дыра сверхмассивная, то все нормально и вы можете продолжать свой безумный путь, правда вы все еще можете передумать и свалить нахрен оттуда, но у нас же нет инстинкта самосохранения, и будем лететь дальше!

Но, если же дыра оказалось малой, то тут начинается небольшой урок кулинарии.

Спагеттификация — вкусно звучит, да? Так вот, это к сожалению довольно неприятный для тебя процесс. Так как, приливные силы у черной дыры станут довольно сильными, то черная дыра будет притягивать разные части тела сильнее, чем на другие. Поэтому, тебя растянет как только выпеченную, итальянскую спаггети.

Наглядный пример.

Ты будешь растягиваться все сильнее и сильнее, пока просто не разорвешься на мельчайшие составляющие твоего тела. Именно на этом и закончится твое приключение. Как бы, а чего ты ожидал вообще, а?

Ну, если же черная дыра огромных размеров, то тебе удастся прожить чуть дольше. Ты пересечешь горизонт событий, перед этим увидев целое световое шоу, черная дыра перед твоим пересечением горизонта событий начнет искажать свет вокруг себя настолько сильно, что ты просто потеряешься в пространстве и перестанешь понимать, где начало, а где конец черной дыры.

Попав во внутрь черный дыры, ты увидишь… Примерно ничего. Как я уже говорил, тьма внутри черной дыры абсолютна, и ты даже воспользовавшись солнечным фонариком, ничего не сможешь увидеть, как и сам фонарик, как и себя в принципе.

Позже вас так же разорвет на элементарные частицы, после чего ваше приключение и будет закончено.

Но, очень интересно будет наблюдать вашему товарищу по приключениям, за вашим падением! Ну или нет…

Это будет самой странной вещью, которую он когда либо увидит. Сначала будет все нормально, вы все ближе и ближе подходите к черной дыре. Но вот странность, с его стороны это будет выглядеть так, что вы будете двигаться к ней все медленнее и медленнее, что вроде бы противоречит тому, что ты должен разгонятся. Но это еще не все, вот ты пересек горизонт событий, и с тобой все нормально, но твой товарищ в шоке: Ты в прямом смысле застыл на месте, ты перестал двигаться совсем и просто завис. После чего, происходят совсем мозговыносящие вещи, ты стал краснеть в прямом смысле слова, весь твой облик краснеет, а в итоге просто исчезает! Почему так произошло? Всему виной горизонт событий. Свет больше не может выбраться из горизонта событий, и поэтому он никогда не достигнет вашего глаза, но свет который еще не успел достигнуть вас, и создает иллюзию, что вы просто зависли. Так же, свет начнет быть менее интенсивным и из-за этого краснеть, пока совсем не исчезнет.

Модель падения в черную дыру. В нижнем левом углу — траектория падения. Решетка — горизонт событий. В нижнем правом углу — время.
Более красивая и без мешающих параметров модель.

Теории связанные с черными дырами.

Из-за непонятности природы черных дыр, с ними связаны много теорий. Одни из них довольно популярны, другие же нет.

Космология черной дыры.

Модель космоса, согласно которой наблюдаемая вселенная находится внутри Черной дыры.

Любая подобная модель требует, чтобы радиус Хаббла (Радиус, после которого невозможно увидеть другие объекты, так как из-за расширения вселенной они «убегают» от нас быстрее скорости света) наблюдаемой Вселенной равнялся её радиусу Шварцшильда (смотреть описание выше). По имеющимся в настоящее время данным, эти величины действительно одинаковы. В такой модели ускоряющееся расширение видимой Вселенной тогда будет трактоваться как бесконечное падение с ускорением, а Большой взрыв — как начало коллапса массы нашей Вселенной внутрь радиуса Шварцшильда, то есть взрыв происходит «внутрь».

То есть, наша вселенная и есть черная дыра, а радиус Хаббла ничто иное, как горизонт событий

Белые дыры

Белая дыра — возможный объект во вселенной, в область которого ничто не может войти. Белая дыра является противоположностью черной дыры и предсказывается теми же уравнениями общей теории относительности. Большинство физиков убеждены, что белых дыр в природе в принципе быть не может.

Если же, гипотеза о их существовании все же верна, это означает, что червоточины вполне возможны, а значит и лететь до какой-то далекой цели и необязательно, нужно лишь создать или стабилизировать червоточину и прыгнуть в нее

Правда, на сегодняшний день неизвестны объекты, которые можно достоверно считать белыми дырами, также неизвестны способы их образования помимо реликтового — сразу после большого взрыва, который был довольно давно, а также нет нет методов их поиска (в отличие от черных дыр, которые должны находиться, например, в центрах крупных галактик).

Израильские астрономы Аллон Реттер и Шломо Хеллер предполагают, что аномальный гамма-всплеск GRB 060614, который произошёл в 2006 году, был белой дырой. (История интересная, однажды может расскажу и про нее).

Алон Реттер считает, что белые дыры, возникнув, сразу распадаются, процесс напоминает Большой взрыв, Реттер с коллегами назвали его Маленький взрыв (Или Small Bang).

Так же, согласно одной из теорий квантовой гравитации, чёрные дыры со временем превращаются в белые

Источник: vk.com

Кто предсказал существование черных дыр

Как и многое в нашем мире — существование черных дыр (или же невидимых звезд — это самый первый термин, которым называли черные дыры) считалось абсурдом. Как объект может быть невидимым? Ведь это противоречит волновой теории света! — Так считал французский математик, астроном и физик Пьер Лаплас. В период начала 19-го века он взял за основу теории британского ученого Джона Мичелла, который предполагал, что в космосе существуют объекты, которые мы не сможем увидеть даже в самый мощный телескоп, так как их сила гравитации не позволит фотонам света покинуть свои пределы. С чего он вообще это предположил?

Изучив работы Исаака Ньютона, которым была описана гравитационная константа (постоянная) Земли, и что все объекты, находящиеся в её пределах — притягиваются. Однако важно понимать, что Ньютон занимался не только изучением гравитации, одним из монументальных открытий является определение света (фотонов), как потока частиц. Мичелл решил объединить воедино эти два открытия и в ходе мысленных экспериментов, связав механику и оптику, он сделал вывод, что объекты, имеющие большую плотность и массу, могут удерживать и не выпускать частицы фотонов. А как фотоны могут удерживаться гравитацией, если это безмассовые частицы?

Представьте пушечное ядро — чтобы запустить его за пределы нашей планеты и сделать искусственным спутником, необходимо разогнать его выше скорости, с которой гравитация нашей планеты притягивает к себе материю. Известно — чем выше плотность и масса объекта, тем более сильное гравитационное притяжение он имеет. Следовательно, чтобы запустить это ядро в свободное пространства, например, с Kepler-442 b, которая по многим параметрам похожа на землю, потребуется большее количество энергии и большая скорость. Но что, если объект имеет такую силу гравитации, что притягивает другие тела с такой силой, что выбраться можно только развив скорость, выше скорости света? (Спойлер — такое невозможно).

Если объект имеет такие параметры (имею в виду, что он притягивает даже фотоны частиц) — это определенно черная дыра. Парадокс таких объектов ставил в тупик всех ученых разных эпох. Даже сейчас, когда уровень развития технологий, способен показать нам черные дыры, мы не способны в подробностях ответить и рассказать обо всем, что они в себе скрывают. Однако есть еще один момент, по которому можно вычислить черную дыру — по формуле гравитационного радиуса, открытой Карлом Шварцшильдом. Эту формулу еще называют «Формулой Шварцшильда», но это неважно. Давайте к сути.

В 1915-м году известнейший ученый Альберт Эйнштейн представил миру общую теорию относительности — ОТО, благодаря этой работе другие исследователи в ближайшее столетие смогли и теоретически, и практически исследовать и определить свойства практически всех явлений в нашей Вселенной. Одним из почитателей Эйнштейна, а именно Карлом Шварцшильдом, после изучения материалов теории относительности была выведена формула, можно даже сказать закон, по которому определяются значение сжатия массивных объектов, скажем для примера — звезд, до гравитационного радиуса.

После того как объект сжался до гравитационного радиуса, под воздействием своих же сил гравитации он не сможет восстановиться, а все другие частицы (излучение, свет) не могут покинуть его пределов. Именно эта модель стала наилучшим объяснением возникновения черных дыр. Сейчас объясню подробнее. Черную дыру чисто теоретически можно сделать из чего угодно. Для этого необходимо взять тело и сжимать его без потери массы. Частицы его вещества будут становиться все более плотны в отношении друг к другу и силы гравитации между ними будут возрастать. Если мы продолжим сжимать тело, например, нашу Землю до диаметра 8 миллиметров, планета станет маленькой черной дырой. Почему 8 миллиметров? Откуда взялась эта цифра? Взялась она, конечно же, не из пустого места, а из вычислений по формуле Шварцшильда. Выглядит она так: Rg=(2GM)/(c^2)

R — это собственно сам радиус (то, что получится в итоге вычисления)

G — гравитационная постоянная (6.67*10^(-11))

M — масса гипотетического тела (любое число)

С в квадрате — скорость света в вакууме (3*10^8)

Подставим значения:

R_g=(2*6.67*10^(-11)*6*10^24)/((3*10^8)^2)

После вычислений получается Rg= 0,008… (км). Переведем значение и получим 8*10^(-3), а это 8 миллиметров.

Можете сами поиграться с формулой и повычислять, до каких размеров нужно сжать, например, Луну, чтобы на её месте образовалась черная дыра. Если считать лень, то можете воспользоваться специальными сервисами в интернете, коих довольно много.

Окей, разобрались с тем, как можно определить и узнать гравитационный радиус образованной черной дыры. Но откуда мы знаем, что из них не может выбраться даже свет? Неужели сила гравитации может быть сильнее скорости света — максимумом скорости в пространстве? Да! И узнали мы это тоже с помощью точных формул и фундаментальных законов. Но тут я попытаюсь объяснить проще, без сложных загроможденных уравнений.

Наше пространство под воздействием гравитации искривляется — именно благодаря этому эффекту тела могут притягиваться друг к другу. Многие считают, что фотоны летят по прямой, но по прямой они летят относительно самих себя. На самом же деле массивные объекты способны искривлять свет от других объектов. Впервые гравитационное воздействие на свет обнаружил английский физик Артур Эдднгтон в 1919-м году. Тогда, изучая солнечное затмение, вместе с остальной командой экспедиторов в Африке было доказано, что Солнце очень слабо, однако, отклоняет лучи света от звезд на небе. Так и черные дыры, будучи плотными телами с бесконечно большой силой гравитации искривляют пространство до такой степени, что свет просто-напросто поглощается ими.

А выйти он не может, так как фотоны следуют, условно говоря по течению. Сравнить этот процесс можно с засасыванием воды в воронке — двигается она под воздействием кинетической силы и без внешних воздействий вода покинуть эту воронку не сможет никак. По отсутствию любого излучения и искривления вокруг, исследователи и обнаруживают черные дыры на карте нашего космоса. По этой причине, кстати, такие объекты и называли — «черными дырами», так как они не испускают, а лишь поглощают все возможные излучения. Долгое время люди не были способны хоть как-то запечатлеть их запечатлеть — все изображения, которые мы видели в интернете, в книгах, это лишь фантазии художников. Однако все они были созданы с учетом всех нюансов физических и математических свойств, формул. И вот, совсем недавно — 10 апреля ученым впервые в истории удалось сделать достоверное фото черной дыры. Об этом мы поговорим далее.

Телескоп горизонта событий (EHT)

Астрофизикам удалось запечатлеть изображение черной дыры, находящейся в галактике Мессье 87 в созвездии Девы. Расстояние от Земли до неё внушительное — 53 миллиона световых лет. Но как ученые смогли сделать её фотографию? — это ведь практически то же самое, что разглядеть морщинку на лбу у человека, который стоит на поверхности Луны… И почему это не удавалось ранее?

До 2019-го года люди никогда не видели реальных изображений черных дыр, об этом я уже говорил. Однако обнаружить их нам удалось давно, еще с появлением радиотелескопов. Одним из последних открытий было обнаружение телескопом «Хаббл» необычной черной дыры в центре галактики RXJ1140.1+0307 в 2017-м году. Чем отличается картинка с «Хаббла» от «EHT" (Event Horizon Telescope)?

Я думаю, тут все очевидно — изображение галактики RXJ1140.1+0307 не позволяет нам полностью оценить все масштабы сверхмассивной черной дыры в центре, а также её визуальные свойства, чтобы подтвердить или опровергнуть предположения астрофизиков. А вот EHT предоставляет нам все доказательства теоретических представлений черных дыр.

Теперь возвращаемся к основным вопросам — «Как ученым удалось сделать такую фотографию»? Телескоп горизонта событий — это не просто одиночный телескоп, это целая сеть из восьми радиотелескопов, установленных в разных частях света. Общий радиус действия сети составляет порядка 10 000 километров. Точность углового расстояния 7-10 микросекунд. Сам процесс запечатления черной дыры в М87 был начат в 2017-м году и продолжался всего четыре дня, четыре дня — изменивших мир. Однако процесс обработки полученных данных потребовал два года, были получены петабайты данных, а жесткие диски с ними перевозили в главный центр самолетами.

Без специального программного алгоритма, который разработала 29-летняя девушка, выпускница института MIT Кэти Боумэн, такого великого события могло бы и не быть. Об этом чуть позже.

Проект по созданию телескопа, способного получить фотографию черной дыры был начат еще в 2012-м году и тогда в планах было создание массивного улавливателя сигналов. Чуть позже, исследователи пришли к выводу, что вовсе не нужно тратить время и деньги на создание такой махины, ведь толку от неё будет мало. А вот от объединения в единую систему нескольких телескопов, находящихся в разных точках Земли, мы смогли бы наиболее точно уловить, так называемую «тень черной дыры». Всего участие в программе принимали 8 телескопов, расположенных на территории США, Испании, Мексики, Чили, Гавайев и Южного Полюса. Россия, к сожалению, участия в этом проекте не принимала.

А как все эти телескопы работали вместе, если они находились на разных континентах? И в чем преимущество? Дело в том, что М87 находится на чудовищно большом расстоянии от Земли и в привычном нам понимании, потребовался бы телескоп, сейчас без шуток, размером со всю планету. Тогда бы мы смогли бы увидеть все что угодно, но сделать подобное нереально, да и смысла в этом нет. А размещение, например, нескольких телескопов на значительном расстоянии друг от друга даст тот же эффект. Еще дело кроется в так называемом угловом расстоянии. Я как-то в этой статье уже сказал, что точность измерения состаялвет 7-10 микросекунд. Что это такое? Давайте рассмотрим на примере. Посмотрите на эту картинку, сейчас вы видете два шара расположенных относительно близко друг к другу.

Но, как только я начну размещать эти сферы все дальше и дальше, для наблюдателя (то есть для нас с вами) они будут постепенно казаться одним целым и в какой-то момент вовсе сольются. Тоже касается и объектов в космосе, которые находятся на большом расстоянии.

Так, например выглядит Луна, сфотографированная на объектив с угловым расстоянием, как у наших глаз.

А так, сфотографированная через телескоп. Разница в количестве деталей и четкости заметна сразу. Если бы мы пытались заснять черную дыру через один телескоп, то у нас бы ничего не получилось. Однако синхронизировав целых восемь телескопов размещенных, как можно дальше друг от друга мы увеличиваем апертуру и можем заглянуть в самые дальние уголки нашего космоса. С этим разобрались. А зачем ученые решили исследовать столь отдаленную от нас галактику с её черной дырой?

Галактика Мессье 87, ну или просто М87 находится от нас на расстоянии в 53 миллиона световых лет. Сверхмассивная черная дыра нашей галактики находится от Солнечной системы всего в 26 тысячах световых лет. Не усложнили мы себе жизнь? — Нет. Ведь запечатлеть, даже в радиоволнах центр нашей галактики было бы крайне сложно, если вовсе невозможно. Вот тогда бы мы и вправду значительно усложнили бы себе жизнь. Дело в том, что мы с вами находимся в рукаве Ориона нашей галактики, и наблюдать её центр очень сложно, из-за того, что миллионы других звезд будут нам просто-напросто создавать помехи и обнаружить так называемую «тень» черной дыры не выйдет. Это тоже самое, что увидеть вашего друга, стоящего ровно напротив вас через пару километров лесополосы — деревья, как и звезды будут мешать обзору.

Также упрощает наблюдения тот факт, что наблюдаемая галактика и её черная находится от нас дальше и изменения в её движении не так заметны.

А как несколько телескопов, находящихся в значительном расстоянии, друг от друга могут одновременно наблюдать одну черную дыру? Наша земля вращается, и все телескопы исследовали черную дыру поочередно, когда планета находилась в нужном положении. То есть — сначала один телескоп делал снимок, потом второй и так далее. После этого все данные, полученные с телескопов, записывались на жесткие диски и перевозились в центр обработки. Как только все данные были собраны при помощи мощнейших суперкомпьютеров эти 5 петабайт данных прошли несколько этапов цифровой обработки — на первом этапе (этапе корреляции) все значения, полученные с телескопов, были объединены, а сам объем файлов был уменьшен в тысячу раз. После того, как все данные были синхронизированы и объединены, записанные радиоволны (именно радиоволны, так как они лучше всех остальных исследуются в миллиметровом диапазоне) проходили процесс калибровки. То есть, специальный алгоритм, о котором мы наконец поговорим в следующем пункте, выявлял недостающую мощность источника, увеличивал её и делал достоверной. Шумы и помехи при этом отсекались. На этом этапе общий объем информации уменьшался в десять тысяч раз. Ну и в заключении данные проходили через алгоритм, визуализирующий полученные радиоволны. Одним из главных разработчиков этой системы является ставшая уже знаменитой на весь мир Кэти Боумен. Девушка, совместно с командой других ученых, смогла создать специальный компьютерный алгоритм, который буквально реставрировал радиоволны и cделал из них картинку, увидя которую мы смогли наконец убедиться во всех нюансах, которые предсказывал Эйнштейн и рисовали художники. Если вы хотите подробно ознакомиться с проектом EHT и всеми техническими нюансами, то я рекомендую посмотреть получасовую лекцию Кэти Боумен на TED.

Я же скажу вкратце, по какому принципу алгоритм сделал из радиоволн картинку. В систему были загружены сотни разных фотографий и картинок с изображениями черных дыр и других космических объектов. Чтобы убедиться в объективности работы алгоритма ученые загружали в него уже исследованные ранее радиоданные других космических объектов и, как оказалось, алгоритм на выходе выдавал картинку, которая была в точности схожа с исходной. Её, кстати, в алгоритм не загружали. Полученное изображение изначально было монохромным, покрасили его в оранжевые тона потом, и только для удобства, чтобы степени яркости плазмы были более отличимы.

В итоге мы теперь знаем, что в течение сотни лет наши убеждения не просто в существовании черных дыр, но и в том, как они выглядят оказались верны. Уже в 2020-м году EHT планируют подключить больше телескопов и спутников к своей системе, чтобы сделать более четкое изображение черной дыры и даже снять её на видео. В будущем это позволит нам узнать намного больше о самой природе черных дыр и нашего пространства. Но не стоит обольщаться — ведь, чем больше ответов мы находим, тем больше новых вопросов возникает. Пока человечество будет жить — эта гонка открытий не закончится никогда.

Источник: trashbox.ru

Говоря о черных дырах простым языком

Чтобы представить, как выглядит черная дыра, достаточно увидеть хвост уходящего в туннель поезда. Сигнальные фонари на последнем вагоне по мере углубления поезда в туннель, будут уменьшаться в размерах, пока совсем не исчезнут из поля зрения. Другими словами — это объекты, где в силу чудовищного притяжения исчезает даже свет. Элементарные частицы, электроны, протоны и фотоны не в состоянии преодолеть невидимый барьер, проваливаются в черную бездну небытия, поэтому такая дыра в пространстве и получила название — черная. Нет внутри нее ни малейшего светлого участка, сплошная чернота и бесконечность. Что находится по ту стороны черной дыры – неизвестно.

Этот космический пылесос обладает колоссальной силой притяжения и в состоянии поглотить целую галактику со всеми скоплениями и сверхскоплениями звезд, с туманностями и с темной материей в придачу. Каким образом это возможно? Остается только догадываться. Известные нам законы физики в данном случае трещат по швам и не дают объяснения происходящим процессам. Суть парадокса заключается в том, что в данном участке Вселенной гравитационное взаимодействие тел определяется их массой. На процесс поглощения одним объектом другого не оказывают влияния их качественный и количественный состав. Частицы, достигнув критического количества на определенном участке, входят в другой уровень взаимодействия, где гравитационные силы становятся силами притяжения. Тело, объект, субстанция или материя под воздействием гравитации начинает сжиматься, достигая колоссальной плотности.

Примерно такие процессы происходят при образовании нейтронной звезды, где звездная материя под воздействием внутренней гравитации сжимается в объеме. Свободные электроны соединяются с протонами, образуя электрически нейтральные частицы — нейтроны. Плотность этой субстанции огромна. Частица материи размером с кусок рафинада имеет вес в миллиарды тонн. Здесь уместным будет вспомнить общую теорию относительности, где пространство и время — величины непрерывные. Следовательно, процесс сжатия не может быть остановлен на полпути и поэтому не имеет предела.

Потенциально черная дыра выглядит как нора, в которой возможно существует переход из одного участка пространства в другой. При этом свойства самого пространства и времени меняются, закручиваясь в пространственно-временную воронку. Достигая дна этой воронки, любая материя распадается на кванты. Что находится по ту стороны черной дыры, этой гигантской норы? Возможно, там существует другое иное пространство, где действуют другие законы и время течет в обратном направлении.

В разрезе теории относительности теория черной дыры выглядит следующим образом. Точка пространства, где гравитационные силы сжали любую материю до микроскопических размеров, обладает колоссальной силой притяжения, величина которой возрастает до бесконечности. Появляется складка времени, а пространство искривляется, замыкаясь в одной точке. Поглощенные черной дырой объекты не в состоянии самостоятельно противостоять силе втягивания этого чудовищного пылесоса. Даже скорость света, которой обладают кванты, не позволяет элементарным частицам преодолеть силу притяжения. Любое тело, попавшее в такую точку, перестает быть материальным объектом, сливаясь с пространственно-временным пузырем.

Черные дыры с точки зрения науки

Если задаться вопросом, как образуются черные дыры? Однозначного ответа не будет. Во Вселенной достаточно много парадоксов и противоречий, которые невозможно объяснить с точки зрения науки. Теория относительности Эйнштейна позволяет только теоретически объяснить природу подобных объектов, однако квантовая механика и физика в данном случае молчат.

Пытаясь объяснить законами физики происходящие процессы, картина будет выглядеть следующим образом. Объект, образуется в результате колоссального гравитационного сжатия массивного или сверхмассивного космического тела. Этот процесс носит научное название — гравитационный коллапс. Термин «черная дыра» впервые прозвучал в научной среде в 1968 году, когда американский астроном и физик Джон Уиллер пытался объяснить состояние звездного коллапса. По его теории, на месте массивной звезды подвергнувшейся гравитационному коллапсу возникает пространственный и временной провал, в котором действует постоянно растущее сжатие. Все, из чего состояла звезда, уходит внутрь себя.

Такое объяснение позволяет сделать вывод, что природа черных дыр никоим образом не связана с процессами, происходящими во Вселенной. Все, что происходит внутри этого объекта, никак не отражается на окружающем пространстве при одном «НО». Сила гравитации черной дыры настолько сильна, что искривляет пространство, заставляя вращаться галактики вокруг черных дыр. Соответственно становится понятна причина, почему галактики принимают форму спиралей. Сколько понадобится времени на то, чтобы огромная галактика Млечный путь исчезла в бездне сверхмассивной черной дыры, неизвестно. Любопытен факт, что черные дыры могут возникать в любой точке космического пространства, там, где для этого созданы идеальные условия. Такая складка времени и пространства нивелирует те огромные скорости, с которыми вращаются звезды и перемещаются в пространстве галактики. Время в черной дыре течет в другом измерении. Внутри этой области никакие законы гравитации не поддаются интерпретации с точки зрения физики. Такое состояние называется сингулярностью черной дыры.

Черные дыры не проявляют никаких внешних идентификационных признаков, об их существовании можно судить по поведению других космических объектов, на которые воздействуют гравитационные поля. Вся картина борьбы не на жизнь, а на смерть происходит на границе черной дыры, которая прикрыта мембраной. Эта мнимая поверхность воронки называется «горизонтом событий». Все, что мы видим до этой границы, осязаемо и материально.

Сценарии образования черных дыр

Развивая теорию Джона Уиллера, можно сделать вывод, что тайна черных дыр скорее не в процессе ее формирования. Образование черной дыры возникает в результате коллапса нейтронной звезды. Причем масса такого объекта должна превосходить массу Солнца в три и более раз. Нейтронная звезда сжимается до тех пор, пока ее собственный свет уже не в состоянии вырваться из тесных объятий силы притяжения. Существует граничный предел в размере, до которого может сжиматься звезда, давая рождение черной дыре. Этот радиус называется гравитационным радиусом. Массивные звезды на финальной стадии своего развития должны иметь гравитационный радиус в несколько километров.

Сегодня ученые получили косвенные доказательства присутствия черных дыр в десятке рентгеновских двойных звездах. У рентгеновских звезд, пульсара или барстера нет твердой поверхности. К тому же их масса больше массы трех Солнц. Нынешнее состояние космического пространства в созвездии Лебедя – рентгеновская звезда Лебедь Х-1, позволяет проследить процесс образования этих любопытных объектов.

Исходя из исследований и теоретических предположений, сегодня в науке существует четыре сценария образования черных звезд:

  • гравитационный коллапс массивной звезды на финальном этапе ее эволюции;
  • коллапс центральной области галактики;
  • формирование черных дыр в процессе Большого взрыва;
  • образование квантовых черных дыр.

Первый сценарий является самым реалистичным, однако то количество черных звезд, с которым мы знакомы на сегодняшний день, превышает количество известных нейтронных звезд. Да и возраст Вселенной не настолько большой, чтобы такое количество массивных звезд смогло пройти полный процесс эволюции.

Второй сценарий имеет право на жизнь, и тому существует яркий пример – сверхмассивная черная дыра Стрелец А*, приютившаяся в центре нашей галактики. Масса этого объекта 3,7 массы Солнца. Механизм этого сценария схож со сценарием гравитационного коллапса с той лишь разницей, что коллапсу подвергается не звезда, а межзвездный газ. Под воздействием гравитационных сил происходит сжатие газа до критической массы и плотности. В критический момент материя распадается на кванты, образуя черную дыру. Однако эта теория вызывает сомнения, так как недавно астрономы Колумбийского университета выявили спутники черной дыры Стрелец А*. Ими оказалось множество мелких черный дыр, которые вероятно образовались другим способом.

Третий сценарий больше теоретический и связан с существованием теории Большого взрыва. В момент образования Вселенной часть материи и гравитационные поля претерпели флуктуацию. Другими словами, процессы пошли другим путем, не связанным с известными процессами квантовой механики и ядерной физики.

Последний сценарий ориентирован на физику ядерного взрыва. В сгустках материи в процессе ядерных реакций под влиянием гравитационных сил происходит взрыв, на месте которого образуется черная дыра. Материя взрывается внутрь себя, поглощая все частицы.

Существование и эволюция черных дыр

Имея приблизительное представление о природе столь странных космических объектов, интересно другое. Какие истинные размеры черных дыр, как быстро они растут? Размеры черных дыр определяются их гравитационным радиусом. Для черных дыр радиус черной дыры определяется ее массой и называется радиусом Шварцшильда. К примеру, если объект имеет массу равную массу нашей планеты, то радиус Шварцшильда в таком случае составляет 9 мм. Наше главное светило имеет радиус в 3 км. Средняя плотность черной дыры, образовавшейся на месте звезды массой 10⁸ масс Солнца, будет близкой к плотности воды. Радиус такого образования составит 300 млн. километров.

Вероятно, что такие гигантские черные дыры располагаются в центре галактик. На сегодняшний день известны 50 галактик, в центре которых находятся огромные временные и пространственные колодцы. Масса таких гигантов составляет миллиарды масса Солнца. Можно только представить, какой колоссальной и чудовищной силой притяжения обладает такая дыра.

Что касается мелких дырочек, то это мини-объекты, радиус которых достигает ничтожных величин, всего 10¯¹² см. Масса такой крошки составляет 10¹⁴гр. Подобные образования возникли в момент Большого взрыва, однако со временем увеличились в размерах и сегодня красуются в космическом пространстве в качестве монстров. Условия, при которых шло образование мелких черных дыр, ученые сегодня пытаются воссоздать в земных условиях. Для этих целей проводятся эксперименты в электронных коллайдерах, посредством которых элементарные частицы разгоняются до скорости света. Первые опыты позволили получить в лабораторных условиях кварк-глюонную плазму — материю, которая существовала на заре образования Вселенной. Подобные эксперименты позволяют надеяться, что черная дыра на Земле – дело времени. Другое дело, не обернется ли подобное достижение человеческой науки катастрофой для нас и для нашей планеты. Создав искусственно черную дыру, мы можем открыть ящик Пандоры.

Последние наблюдения за другими галактиками, позволили ученым открыть черные дыры, размеры которых превышают все мыслимые ожидания и предположения. Эволюция, которая происходит с подобными объектами, позволяет лучше понять, от чего растет масса черных дыр, каков ее реальный предел. Ученые пришли к выводу, что все известные черные дыры выросли до своих реальных размеров в течение 13-14 млрд. лет. Разница в размерах объясняется плотностью окружающего пространства. Если у черной дыры достаточно пищи в пределах досягаемости сил притяжения, она растет словно на дрожжах, достигая массы в сотни и тысячи солнечных масс. Отсюда и гигантские размеры таких объектов, расположенных в центре галактик. Массивное скопление звезд, огромные массы межзвездного газа являются обильной пищей для роста. При слиянии галактик, черные дыры могут сливаться воедино, образуя новый сверхмассивный объект.

Судя по анализу эволюционных процессов, принято выделять два класса черных дыр:

  • объекты с массой в 10 раз больше солнечной массы;
  • массивные объекты, масса которых составляет сотни тысяч, миллиарды солнечных масс.

Существуют черные дыры со средней промежуточной массой равной 100-10 тыс. масс Солнца, однако их природа до сих пор остается неизвестной. На одну галактику приходится примерно один такой объект. Изучение рентгеновских звезд позволило найти на расстоянии 12 миллионов световых лет в галактике М82 сразу две средние по массе черные дыры. Масса одного объекта варьируется в диапазоне 200-800 масс Солнца. Другой объект гораздо больше и имеет массу 10-40 тыс. солнечных масс. Судьба таких объектов интересна. Располагаются они вблизи звездных скоплений, постепенно притягиваясь к сверхмассивной черной дыре, расположенной в центральной части галактики.

Наша планета и черные дыры

Несмотря на поиски разгадки о природе черных дыр, научный мир беспокоит место и роль черной дыры в судьбе галактики Млечный путь и, в частности, в судьбе планеты Земля. Складка времени и пространства, которая существует в центре Млечного пути, постепенно поглощает все существующие вокруг объекты. Уже поглощены в черной дыре миллионы звезд и триллионы тонн межзвездного газа. Со временем дойдет очередь и до рукавов Лебедя и Стрельца, в которых находится Солнечная система, пройдя расстояние в 27 тыс. световых лет.

Другая ближайшая сверхмассивная черная дыра находится в центральной части галактики Андромеда. Это около 2,5 млн. световых лет от нас. Вероятно, до того времени, как наш объект Стрелец А* поглотит собственную галактику, следует ожидать слияния двух соседствующих галактик. Соответственно произойдет и слияние двух сверхмассивных черных дыр в одно целое, страшное и чудовищное по размерам.

Совершенно другое дело — черные дыры небольших размеров. Чтобы поглотить планету Земля достаточно черной дыры радиусом в пару сантиметров. Проблема заключается в том, что по своей природе черная дыра совершенно безликий объект. Из ее чрева не исходит никакое излучение, ни радиация, поэтому заметить столь загадочный объект достаточно трудно. Только с близкого расстояния можно обнаружить искривление фонового света, которое свидетельствует о том, что в этом районе Вселенной имеется дырка в пространстве.

На сегодняшний день ученые установили, что ближайшая к Земле черная дыра — это объект V616 Monocerotis. Чудовище расположено в 3000 световых лет от нашей системы. По своим размерам это крупное образование, его масса составляет 9-13 солнечных масс. Другим близким объектом, несущим угрозу нашему миру, является черная дыра Gygnus Х-1. С этим монстром нас разделяет расстояние в 6000 световых лет. Выявленные по соседству с нами черные дыры, являются частью бинарной системы, т.е. существуют в тесном соседстве со звездой, питающей ненасытный объект.

Заключение

Существование в космосе таких загадочных и таинственных объектов, какими являются черные дыры, безусловно, заставляет нас находиться на стороже. Однако все, что происходит с черными дырами, случается достаточно редко, если брать во внимание возраст Вселенной и огромные расстояния. В течение 4,5 млрд. лет Солнечная система пребывает в состоянии покоя, существуя по известным нам законам. За это время ничего подобного, ни искажения пространства, ни складки времени вблизи Солнечной системы не появилось. Вероятно, для этого нет подходящих условий. Та часть Млечного пути, в которой пребывает система звезды Солнце, является спокойным и стабильным участком космоса.

Ученые допускают мысль, что появление черных дыр не случайно. Такие объекты выполняют во Вселенной роль санитаров, уничтожающих излишек космических тел. Что же касается судьбы самих монстров, то их эволюция еще до конца не изучена. Существует версия, что черные дыры не вечны и на определенном этапе могут прекратить свое существование. Уже ни для кого не секрет, что такие объекты представляют собой мощнейшие источники энергии. Какая это энергия и в чем она измеряется – это другое дело.

Стараниями Стивена Хокинга науке была предъявлена теория о то, что черная дыра все-таки излучает энергию, теряя свою массу. В своих предположениях ученый руководствовался теорией относительности, где все процессы взаимосвязаны друг с другом. Ничего просто так не исчезает, не появившись в другом месте. Любая материя может трансформироваться в другую субстанцию, при этом один вид энергии переходит на другой энергетический уровень. Так, может быть, обстоит дело и с черными дырами, которые являются переходным порталом, из одного состояния в другое.

Источник: MilitaryArms.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.