Черная дыра рисунок


Черная дыра рисунок

В серии статей, опубликованных 10 апреля в специальном выпуске Astrophysical Journal Letters (https://iopscience.iop.org/issue/2041-8205/875/1), команда астрофизиков опубликовала четыре изображения сверхмассивной черной дыры, находящейся в центре галактики Мессье 87, или M87, которая расположена в скоплении галактик Дева в 55 миллионов световых лет от Земли. Все четыре изображения показывают центральную темную область, окруженную кольцом света, которое кажется однобоким — с одной стороны ярче, чем с другой.

Альберт Эйнштейн в своей общей теории относительности предсказал существование черных дыр в виде бесконечно плотных компактных областей в пространстве, где гравитация настолько велика, что ничто, даже свет, не может вырваться наружу. Так что по определению черные дыры невидимы. Но если черная дыра окружена светоизлучающим материалом, таким как плазма, уравнения Эйнштейна предсказывают, что часть этого материала должна создавать «тень» или контур черной дыры и ее границы, также известной как горизонт событий — уровень, попав за который уже ничто не может вернуться назад. Основываясь на новых изображениях M87, ученые считают, что они впервые видят тень черной дыры в виде темной области в центре каждого изображения.


Теория относительности предсказывает, что мощное гравитационное поле заставляет свет огибать черную дыру, образуя яркое кольцо вокруг ее силуэта, а также заставляет окружающий материал вращаться вокруг нее со скоростью, близкой к скорости света. Яркое кривое кольцо на полученных фотографиях предлагает визуальное подтверждение этих эффектов: материал, движущийся в кольце в нашу сторону, оказывается более ярким, чем тот, который движется от нас.

Из этих изображений астрофизики вычислили, что черная дыра примерно в 6.5 миллиардов раз массивнее нашего Солнца. Небольшие различия между каждым из четырех полученных изображений также подтверждают, что материал рядом с черной дырой перемещается почти со скоростью света.

«Эта черная дыра намного больше, чем орбита Нептуна, а ведь ему требуется 200 лет, чтобы совершить один оборот вокруг Солнца», — говорит Джеффри Крю, исследователь из обсерватории Хейстек. «Учитывая, что черная дыра M87 крайне велика, ее облет на скорости света займет неделю».

Черная дыра рисунок
На фото, полученных в течение недели, хорошо видно, как меняется внешний вид черной дыры.


«Люди склонны рассматривать небо как нечто статичное, где вещи не меняются, или, если они это делают, то это происходит в сроки, превышающие продолжительность жизни человека», — говорит Винсент Фиш, ученый-исследователь из обсерватории Хейстек. «Но M87 меняется в масштабах нескольких дней. В будущем мы, возможно, сможем создать целый фильм о жизни черной деры. Сегодня же мы видим первые кадры».

«Эти замечательные фотографии черной дыры M87 доказывают, что Эйнштейн снова был прав», — говорит Мария Цубер, вице-президент MIT по исследованиям. «Открытие стало возможным благодаря достижениям в цифровых системах, в которых инженеры Хейстек уже давно преуспели».

Природа была добра к нам

Изображения были получены с помощью массива телескопов планетарного масштаба, называемого Event Horizon или EHT. Он состоит из восьми радиотелескопов, каждый из которых находится в отдаленной от городов высокогорной среде, включая горные вершины Гавайев, испанскую Сьерра-Невады, чилийскую пустыню и льды Антарктики.
Черная дыра рисунок
Схематичное расположение телескопов, создавших изображение черной дыры.


В любой день каждый телескоп работает независимо, наблюдая астрофизические объекты, которые излучают слабые радиоволны. Тем не менее, черная дыра бесконечно меньше и темнее, чем любой другой радиоисточник в небе. Чтобы ее четко видеть, астрономам необходимо использовать очень короткие волны — в данном случае 1.3 миллиметра — которые могут свободно проходить через газопылевые облака между черной дырой и Землей.

Создание фото черной дыры также требует серьезного увеличения углового разрешения, что в данном случае эквивалентно чтению текста на телефоне в Нью-Йорке из кафе в Париже. Угловое разрешение телескопа увеличивается пропорционально размеру приемной тарелки. Тем не менее, даже самые большие радиотелескопы на Земле недостаточно велики, чтобы увидеть черную дыру.

Но когда несколько радиотелескопов, разделенные очень большими расстояниями, синхронизируются и фокусируются на одном источнике в небе, они могут работать как одна очень большая радиотарелка, используя метод, известный как очень длинная базовая интерферометрия или VLBI. В результате их совокупное угловое разрешение может быть значительно увеличено.

Что касается EHT, восемь участвующих телескопов суммировались в виртуальную радиотарелку размером с Землю, с максимальным угловым разрешением до 20 микросекунд — примерно в 3 миллиона раз лучше, чем идеальное человеческое зрение. По счастливой случайности, этого хватает для наблюдения черной дыры согласно уравнениям Эйнштейна.


«Природа была добра к нам и дала нам что-то достаточно большое, чтобы увидеть черную дыру, используя современное оборудование и методы», — говорит Крю, один из руководителей рабочей группы по объединению телескопов в массив EHT.

Огромные объемы данных

5 апреля 2017 года EHT начал наблюдать за M87. Изучив многочисленные прогнозы погоды, астрономы определили четыре ночи, которые дадут идеальные условия для всех восьми обсерваторий — редкая возможность, когда они могут работать как одна радиотарелка для наблюдений за черной дырой.

В радиоастрономии телескопы регистрируют прилетающие фотоны как волны, амплитуда и фаза которых измеряется как напряжение. Когда они наблюдали за М87, каждый телескоп записывал получаемые напряжения в виде массивов чисел. «Мы записали кучу данных — петабайты для каждой станции», — говорит Крю.

Всего каждый телескоп получил около одного петабайта данных, что равно 1 миллиону гигабайт. Каждая станция регистрировала этот огромный поток информации на несколько Mark6 — сверхбыстрых регистраторов данных, которые были первоначально разработаны в обсерватории Хейстек.

Черная дыра рисунок
Такие сервера, оснащенные регистраторами Mark6, стоят в каждой обсерватории и позволяют записывать петабайты данных. 


После окончания наблюдений исследователи на каждой станции собрали стопку жестких дисков и отправили их почтой в обсерваторию Хейстек в Массачусетсе и в Радиоастрономический институт Планка в Германии — да, воздушный транспорт в данном случае был намного быстрее, чем электронная передача данных. В обоих местах данные воспроизводились на высокоспециализированных суперкомпьютерах, называемых корреляторами, которые обрабатывали данные двумя потоками одновременно.

Поскольку все телескопы в массиве EHT находились в разных местах, они имели немного разные представления об интересующем объекте — в данном случае, M87. Данные, полученные двумя отдельными телескопами, включают в себя сигнал от черной дыры, но также содержат и шум, характерный для соответствующих телескопов.

Суперкомпьютер-коррелятор попарно сравнивает данные со всех 8 телескопов EHT. По этим сравнениям он математически отсеивает шум и выбирает только сигнал от черной дыры. Этому способствуют и высокоточные атомные часы, установленные на каждом телескопе — они позволяют максимально точно сопоставить получаемые потоки данных.

«Точное выравнивание потоков данных и учет всех видов тонких возмущений во времени — это одна из вещей, на которых специализируется Хейстек», — говорит Колин Лонсдейл, директор Хейстек и вице-председатель совета директоров EHT.

Затем команды как в Хейстек, так и в Радиоастрономическом институте Планка начали кропотливый процесс «совмещения» данных, выявления ряда проблем на различных телескопах, их исправления и повторного совмещения до тех пор, пока данные не стали идеально подходить друг к другу. Только после этого они были переданы четырем отдельным командам по всему миру, каждая из которых получила задание создать изображение из них с использованием независимых методов.


«Это была вторая неделя июня, и я помню, что не спал всю ночь перед получением данных, убеждая себя, что я смогу все сделать правильно», — говорит Казунори Акияма, руководитель одной из групп по обработке изображений с EHT.

Все четыре команды по обработке изображений ранее проверили свои алгоритмы на других астрофизических объектах, убедившись, что их методы позволят получить точную визуализацию радиоданных. Когда данные были получены, Акияма и его коллеги сразу же проверили их с помощью своих алгоритмов. Важно отметить, что каждая команда делала это независимо от других, чтобы избежать какого-либо группового отклонения в результатах.

«Первое изображение, которое получила наша группа, было немного грязным, но мы увидели это кольцевое излучение, и я был так взволнован в тот момент», — вспоминает Акияма. «Возможно, я был единственным человеком, который получил изображение черной дыры».

Черная дыра рисунок
Изображения, полученные разными командами.


Его беспокойство было недолгим. Вскоре после этого все четыре команды встретились в рамках инициативы «Черная дыра» в Гарвардском университете, чтобы сравнить полученные изображения, и обнаружили, с некоторым облегчением, что все они создали одну и ту же кривую структуру, похожую на кольцо — первые прямые изображения черной дыры.

«Существовали способы найти сигнатуры черных дыр в астрономии, но это первый раз, когда кто-либо их сфотографировал», — говорит Крю. «Это переломный момент».

Новая эра

Идея создания EHT была задумана в начале 2000-х годов Шепердом Доулеманом, который тогда руководил новаторской программой VLBI в обсерватории Хейстек, а теперь возглавляет проект EHT. В то время инженеры Хейстек разрабатывали цифровые рекордеры и корреляторы, которые могли бы обрабатывать огромные потоки данных, которые получал бы целый ряд разрозненных телескопов.

«Концепция получения изображения черной дыры существует уже десятилетия», — говорит Лонсдейл. «Но на самом деле именно развитие современных цифровых систем заставило людей задуматься о радиоастрономии как о способе сделать это. Строилось больше телескопов на вершинах гор, и постепенно пришло осознание того, что эй — [получение изображения черной дыры] не совсем сумасшедшая идея». 

В 2007 году команда Доулмана проверила концепцию EHT, установив свои рекордеры на трех разнесенных по Земле радиотелескопах и нацелив их вместе на Стрелец A*, черную дыру в центре нашей собственной галактики.


«У нас не было нужного количества радиотелескопов, чтобы сделать изображение», — вспоминает Фиш, один из руководителей рабочей группы EHT по научным операциям. «Но мы могли видеть, что там было что-то подходящего размера».

Сегодня EHT выросла до 11 обсерваторий: ALMA, APEX, Гренландский телескоп, 30-метровый телескоп IRAM, Обсерватория IRAM NOEMA, телескоп Kitt Peak, телескоп Джеймса Клерка Максвелла, Большой миллиметровый телескоп Альфонсо Серрано, Субмиллиметровый массив, Субмиллиметровый телескоп и Южный полюсный телескоп.

The Event Horizon Telescope and Global mm-VLBI Array on the Earth.jpg
Все телескопы массива EHT на данный момент.

Планируется присоединение большего числа обсерваторий к массиву EHT, чтобы сделать изображение М87 более четким, а также попытаться увидеть сквозь плотный материал, который лежит между Землей и центром нашей галактики, черную дыру Стрельца А* в нем.

В координации наблюдений и анализе полученных данных приняли участие более 200 ученых со всего мира из 13 научных учреждений, включая обсерваторию Хейстек. «Мы продемонстрировали, что EHT — это обсерватория, которая видит черную дыру в масштабе горизонта событий», — говорит Акияма. «Это начало новой эры астрофизики по изучению черных дыр».

Источник: www.iguides.ru

Структура черной дыры


Для лучшего понимания самого понятия черной дыры рассмотрим случай так называемой шварцшильдовской черной дыры. Это упрощенная модель — сферически симметричная черная дыра, которая характеризуется только массой.

Такая черная дыра может быть порождена гипотетической умирающей  звездой, лишенной как электрического заряда, так и магнитного поля. К тому же, эта звезда не должна вращаться. Для наглядности представим структуру  черной дыры на рисунке ниже:

Шварцшильдовская черная дыра
 

Как видим, черную дыру окружает фотонная сфера, состоящая из лучей света, захваченных дырой и движущихся по неустойчивым круговым орбитам вокруг нее. Внутри фотонной сферы находится горизонт событий. Горизонт событий – это точка невозврата из черной дыры.

Материя и информация, попавшие за горизонт событий, уже никогда не смогут вырваться за пределы этой односторонне пропускающей поверхности.

Наконец, в центре черной дыры находится сингулярность – область бесконечно сильно искривленного пространства-времени. Все то, что проваливается за горизонт событий, засасывается в сингулярность, где прекращает свое существование в привычном нам виде.

Виды черных дыр во Вселенной


Современная астрофизика рассматривает три типа черных дыр во Вселенной: звездные, сверхмассивные и реликтовые.

Звездные черные дыры

Это черные дыры со звездными массами. Они возникают как результат жизни массивных звезд. Отметим, что черные дыры образуются только из звезд, масса которых превышает массу Солнца в 20-40 раз.

Другой вариант образования звездной черной дыры — аккреция газа.

Аккреция — это падение вещества из окружающего пространства на космическое тело.

Газ «падает» на нейтронную звезду до тех пор, пока масса последней не превзойдет максимально возможной  массы для нейтронных звезд. В таком случае нейтронная звезда коллапсирует в маломассивную черную дыру.

Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы

Сверхмассивные черные дыры

Предпологают, что такие черные дыры находятся в центрах галактик. Их масса может составлять до 10 в девятой степени масс Солнца. Эти выводы сделаны на основании анализа движения звезд около центров галактик.

Существует также гипотеза, согласно которой сверхмассивные черные дыры находятся в центрах квазаров – малоизученных и самых далеких из тех космических объектов, которые можно наблюдать с Земли. Квазары представляют собой ядра галактик и в своем центре имеют черную дыру.

Квазары обладают невероятно сильной светимостью и небольшими размерами, их можно наблюдать на расстоянии в 10 млрд световых лет. Эти объекты выделяют огромную энергию во всех областях спектра электромагнитных волн, а особенно — в инфракрасной области.

Первичные или реликтовые черные дыры

Самые маленькие черные дыры, образование которых происходило на ранних стадиях развития Вселенной. Появившиеся вследствие неоднородности Большого Взрыва сгустки вещества могли сжиматься до состояния черных дыр, пока остальная часть вещества расширялась.

Черная дыра — это не всегда что-то очень большое и тяжелое. Ученые предполагают, что размер некоторых первичных черных дыр может быть значительно меньше размера протона.

В другой нашей статье вы можете узнать, как работает ядерный реактор. А если понадобится помощь с учебой — обращайтесь в студенческий сервис №1.

Источник: Zaochnik.ru

Содержание

  • Что показали на пресс-конференции?
  • Что такое черная дыра?
  • Как фотографируют черную дыру?
  • Какие черные дыры мы фотографируем?

Перед релизом первого в истории прямого изображения черной дыры (или ее «тени») стоит помнить, что все изображения, которые вы видели раньше, — фантазия художника. Реальное фото вряд ли будет похоже хоть на что-то в красочной выдаче Google. Скорее всего, нас ожидает что-то похожее на одну из компьютерных симуляций команды EHT. Также не забывайте, что данные радиотелескопов позволяют составить только монохромное изображение. Если на финальном снимке будет присутствовать цвет — это искусственное тонирование, примененное к фотографии исключительно из эстетических соображений.

Что показали на презентации?

В начале конференции выступающий напомнил нам, что один человек 100 лет назад хотел увидеть это изображение. Это был Альберт Эйнштейн. И сегодня состоялся великий прорыв в истории человечества. Мы получили фотографию черной дыры.

— Я очень горд как ученый. Так как наука дает урок политикам, — подчеркнул он, имея в виду, что нужна кооперация людей со всего мира, чтобы достичь столь высокого достижения.

На пресс-конференции представили часть ученых, причастных к получению изображения. После чего на экране наконец показали изображение из центра галактики M 87. Конечно, оно оказалось не столь четким, как ожидали зрители.

— Мы перепрофилировали всю Землю в радиотелескоп. И снимок лучше, чем есть, сделать не могли. Только если установить что-нибудь на Луне. Мы ограничены нашим оборудованием, — подчеркнули исследователи.

На фотографии зафиксирована «тень» и аккреционный диск в центре удаленной галактики Messier 87. Она удалена от нас на расстояние 55 млн световых лет.

— Когда мы уверены, что разглядели тень, мы могли бы сравнить наши наблюдения с большими компьютерными моделями, которые включают физику искривленного пространства, перегретой материи и сильных электромагнитных полей. Многие особенности наблюдаемого изображения удивительно хорошо совпадают с нашим теоретическим пониманием, — заявил Пол Хо, член правления и директор Восточно-азиатской обсерватории. — Это дает нам уверенность в интерпретации наших наблюдений, включая оценку массы черной дыры.

Что такое черная дыра?

Черные дыры чаще всего возникают в результате гибели звезд. Когда запасы топлива в крупных звездах истощаются, угасающая термоядерная реакция не может больше противостоять гравитационному сжатию звезды. И она начинает схлопываться до критически малых размеров. При этом масса таких объектов оказывается чертовски большой. Из-за этого сила гравитации такого объекта не позволяет даже свету вырваться из гравитационного радиуса, и он падает в черную дыру.

Обычно художники изображают черные дыры в виде черного круга, опоясанного светящейся сферой. Граница между тенью и светом называется горизонтом событий. Это черта, из-за пределов которой не может вырваться ни один объект, какой бы высокой ни была его скорость. А светящаяся сфера является аккреционным диском — сжимающимся веществом, падающим на черную дыру, разогретым в результате трения.

Существование черных дыр предсказано общей теорией относительности и косвенно доказано гравитационной волной, зарегистрированной в сентябре 2015 года двумя детекторами LIGO. Форма полученного сигнала гравитационной волны совпадала с предсказанной общей теорией относительности формой сигнала от слияния двух черных дыр.

На сегодня ученые обнаружили около тысячи объектов, по свойствам которых можно предположить, что они являются черными дырами. Но прямых наблюдений пока не поступало, так как радиус этих объектов настолько мал, что их крайне сложно уловить современными телескопами.

Как снимали черную дыру?

За нынешние съемки ответственен проект Event Horizon Telescope (EHT) — это коллаборация ученых и нескольких радиотелескопов, расположенных в различных уголках Земли. В частности, во Франции, США, Мексике, Чили, Испании, Антарктиде и на Гавайях. Эти радиотелескопы на протяжении определенного периода времени следили за излучением, приходящим от двух сверхмассивных черных дыр. Одна размещена в центре нашей галактики Млечный Путь и носит название Стрелец A*, а другая находится в сверхмассивной галактике Messier 87.

Благодаря огромному количеству радиотелескопов в разных частях света EHT удалось создать интерферометр — виртуальный телескоп с эффективным диаметром как у Земли, с высокой чувствительностью и высоким угловым разрешением. Основной проблемой была синхронизация данных со всех радиотелескопов по времени. А потому каждый из них опирается на отсчет времени по атомным часам.

Одно дело собрать данные — и совсем другая задача обработать их. В ходе наблюдения за черными дырами было собрано огромное количество данных с каждого телескопа. Настолько большое, что их нереально было передавать через интернет. А потому жесткие диски с этими данными транспортировались самолетами в обсерваторию Хейстек (США), принадлежащую Массачусетскому технологическому институту, и Радиоастрономический институт Макса Планка (Германия). Там данные были перекрестно коррелированы и проанализированы на суперкомпьютере.

Источник: tech.onliner.by


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.