Запутанность квантовых частиц


 Просмотр этого шаблона  Квантовая механика
Принцип неопределённости
Введение
Математические основы


См. также: Портал:Физика

Ква́нтовая запу́танность[1] (см.
здел «Название явления в русскоязычных источниках») — квантовомеханическое явление, при котором квантовые состояния двух или большего числа объектов оказываются взаимозависимыми. Такая взаимозависимость сохраняется, даже если эти объекты разнесены в пространстве за пределы любых известных взаимодействий, что находится в логическом противоречии с принципом локальности. Например, можно получить пару фотонов, находящихся в запутанном состоянии, и тогда если при измерении спина первой частицы спиральность оказывается положительной, то спиральность второй всегда оказывается отрицательной, и наоборот.

  • 1 История изучения
    • 1.1 Спор Бора и Эйнштейна, ЭПР-Парадокс
    • 1.2 Неравенства Белла, экспериментальные проверки неравенств
    • 1.3 Современный этап
  • 2 Название явления в русскоязычных источниках
  • 3 Математическая формулировка
  • 4 Получение запутанных квантовых состояний
  • 5 Применение
    • 5.1 «Сверхсветовой коммуникатор» Херберта
    • 5.2 Квантовая коммуникация
    • 5.3 Квантовая телепортация
  • 6 Физическая интерпретация явления
    • 6.1 Копенгагенская интерпретация
    • 6.2 Интерпретация Бома
    • 6.3 Многомировая интерпретация
    • 6.4 Непротиворечивые истории
    • 6.5 Объективная редукция Джирарди — Римини — Вебера
    • 6.6 Транзакционная интерпретация

  • 7 Явление в религии и в массовой культуре
  • 8 Примечания
  • 9 Литература
  • 10 См. также

История изучения

Спор Бора и Эйнштейна, ЭПР-Парадокс

На Пятом Сольвеевском конгрессе 1927 года одним из центров дискуссии стал спор Бора и Эйнштейна о принципах Копенгагенской интерпретации квантовой механики[2], которая, впрочем, ещё не имела этого названия, закрепившегося только в 50-е годы XX века[3]. Эйнштейн настаивал на сохранении в квантовой физике принципов детерминизма классической физики и на трактовке результатов измерения с точки зрения «несвязанного наблюдателя» (англ. «detached observer»). С другой стороны, Бор настаивал на принципиально недетерминированном (статистическом) характере квантовых явлений и неустранимом эффекте измерения на само состояние. Как квинтэссенция этих споров часто приводятся диалог Эйнштейна с Бором: «— Бог не играет в кости. — Эйнштейн, не указывай Богу, что ему делать.», а также саркастический вопрос Эйнштейна: «Вы действительно считаете, что Луна существует, только когда вы на неё смотрите?»[4]

В продолжение начавшихся споров, в 1935 году Эйнштейн, Подольский и Розен сформулировали ЭПР-парадокс, который должен был показать неполноту предлагаемой модели квантовой механики. Их статья «Можно ли считать квантово-механическое описание физической реальности полным?» была опубликована в №47 журнала «Physical Review»[5].


В ЭПР-парадоксе мысленно нарушался принцип неопределённости Гейзенберга: при наличии двух частиц, имеющих общее происхождение, можно измерить состояние одной частицы и по нему предсказать состояние другой, над которой измерение ещё не производилось. Анализируя в том же году подобные теоретически взаимозависимые системы, Шрёдингер назвал их «запутанными» (англ. entangled)[6]. Позднее англ. entangled и англ. entanglement стали общепринятыми терминами в англоязычных публикациях[7]. Следует отметить, что сам Шрёдингер считал частицы запутанными, только пока они физически взаимодействовали друг с другом. При удалении за пределы возможных взаимодействий запутанность исчезала[7]. То есть значение термина у Шрёдингера отличается от того, которое подразумевается в настоящее время.

Эйнштейн не рассматривал ЭПР-парадокс как описание какого-либо действительного физического феномена. Это была именно мысленная конструкция, созданная для демонстрации противоречий принципа неопределённости. В 1947 году в письме Максу Борну он назвал подобную связь между запутанными частицами «жутким дальнодействием» (нем. spukhafte Fernwirkung, англ. spooky action at a distance в переводе Борна)[8]:


Уже в следующем номере «Physical Review» Бор опубликовал свой ответ в статье с таким же заголовком, как и у авторов парадокса[10]. Сторонники Бора посчитали его ответ удовлетворительным, а сам ЭПР-парадокс — вызванным неправильным пониманием сути «наблюдателя» в квантовой физике Эйнштейном и его сторонниками[7]. В целом большинство физиков просто устранилось от философских сложностей Копенгагенской интерпретации. Уравнение Шрёдингера работало, предсказания совпадали с результатами, и в рамках позитивизма этого было достаточно. Гриббин пишет по этому поводу[11]: «чтобы добраться из точки А в точку Б, водителю необязательно знать, что происходит под капотом его машины». Эпиграфом же к своей книге Гриббин поставил слова Фейнмана:

Неравенства Белла, экспериментальные проверки неравенств

Такое состояние дел оказалось не слишком удачным для развития физической теории и практики. «Запутанность» и «жуткие дальнодействия» игнорировались почти 30 лет[7], пока ими не заинтересовался ирландский физик Джон Белл.


охновлённый идеями Бома[12] (см. Теория де Бройля — Бома), Белл продолжил анализ ЭПР-парадокса и в 1964 сформулировал свои неравенства[13]. Весьма упрощая математические и физические составляющие, можно сказать, что из работы Белла следовали две однозначно распознаваемые ситуации при статистических измерениях состояний запутанных частиц. Если состояния двух запутанных частиц определены в момент разделения, то должно выполняться одно неравенство Белла. Если состояния двух запутанных частиц неопределены до измерения состояния одной из них, то должно выполняться другое неравенство.

Неравенства Белла предоставили теоретическую базу для возможных физических экспериментов, однако по состоянию на 1964 год техническая база не позволяла ещё их поставить. Первые успешные эксперименты по проверке неравенств Белла были осуществлены Клаузером (англ.)русск. и Фридманом в 1972 году[14]. Из результатов следовала неопределённость состояния пары запутанных частиц до проведения измерения над одной из них. И всё же до 80-х годов XX века квантовая сцепленность рассматривалась большинством физиков как «не новый неклассический ресурс, который можно использовать, а скорее как конфуз, ждущий окончательного разъяснения»[7].

Однако за экспериментами группы Клаузера последовали эксперименты Аспэ (англ.)русск.
1981 году[14]. В классическом эксперименте Аспэ (см. схему) два потока фотонов с нулевым суммарным спином, вылетавшие из источника S, направлялись на призмы Николя a и b. В них за счёт двойного лучепреломления происходило разделение поляризаций каждого из фотонов на элементарные, после чего пучки направлялись на детекторы D+ и D–. Сигналы от детекторов через фотоумножители поступали в регистрирующее устройство R, где вычислялось неравенство Белла.

Результаты, полученные как в опытах Фридмана–Клаузера, так и в опытах Аспэ, чётко говорили в пользу отсутствия эйнштейновского локального реализма. «Жуткое дальнодействие» из мысленного эксперимента окончательно стало физической реальностью. Последний удар по локальности был нанесён в 1989 году многосвязными состояниями Гринбергера — Хорна — Цайлингера (англ.)русск.[15], заложившими базис квантовой телепортации. В 2010 году Джон Клаузер (англ.)русск., Ален Аспэ (англ.)русск. и Антон Цайлингер стали лауреатами премии Вольфа по физике «за фундаментальный концептуальный и экспериментальный вклад в основы квантовой физики, в частности за серию возрастающих по сложности проверок неравенств Белла (или расширенных версий этих неравенств) с использованием запутанных квантовых состояний»[16].

  • Лауреаты премии Вольфа по физике 2010 года

Современный этап

Современные версии описанного выше эксперимента создают сегменты Sa и Sb такой длины, чтобы регистрация фотонов происходила в заведомо не связанных известными взаимодействиями областях пространства-времени. В 2007 году исследователям из Мичиганского университета удалось разнести запутанные фотоны на рекордное в тот момент расстояние в 1 метр[17].

В 2008 году группе швейцарских исследователей из Университета Женевы удалось разнести два потока запутанных фотонов на расстояние 18 километров. Помимо прочего, это позволило произвести временны́е измерения с недостижимой ранее точностью. В результате было установлено, что если некое скрытое взаимодействие и происходит, то скорость его распространения должна как минимум в 100 000 раз превышать скорость света в вакууме. При меньшей скорости временные задержки были бы замечены[18].

Летом того же года другой группе исследователей из австрийского Института квантовой оптики и квантовой информации (англ.)русск., включая Цайлингера, удалось поставить ещё более масштабный эксперимент, разнеся потоки запутанных фотонов на 144 километра, между лабораториями на островах Ла Пальма и Тенерифе.
работка и анализ столь масштабного эксперимента продолжаются, последняя версия отчёта была опубликована в 2010 году[19]. В данном эксперименте удалось исключить возможное влияние недостаточного расстояния между объектами в момент измерения и недостаточной свободы выбора настроек измерения. В результате были ещё раз подтверждены квантовая запутанность и, соответственно, нелокальная природа реальности. Правда, осталось третье возможное влияние — недостаточно полной выборки. Эксперимент, в котором все три потенциальных влияния будут исключены одновременно, на сентябрь 2011 года является вопросом будущего.

В большинстве экспериментов с запутанными частицами используются фотоны. Это объясняется относительной простотой получения запутанных фотонов и их передачи в детекторы, а также бинарной природой измеряемого состояния (положительная или отрицательная спиральность). Однако явление квантовой запутанности существует и для других частиц и их состояний. В 2010 году международный коллектив учёных из Франции, Германии и Испании получил и исследовал[20] запутанные квантовые состояния электронов, то есть частиц с массой, в твёрдом сверхпроводнике из углеродных нанотрубок. В 2011 году исследователям из Института квантовой оптики общества Макса Планка удалось создать состояние квантовой запутанности между отдельным атомом рубидия и конденсатом Бозе-Эйнштейна, разнесёнными на расстояние 30 метров[21].

Название явления в русскоязычных источниках

При устойчивом английском термине Quantum entanglement, достаточно последовательно использующимся в англоязычных публикациях, русскоязычные работы демонстрируют широкое разнообразие узуса. Из встречающихся в источниках по теме терминов можно назвать (в алфавитном порядке):

  1. Запутанные квантовые состояния[22]
  2. Квантовая запутанность[23]
  3. Квантовая зацепленность[24]
  4. Квантовые корреляции[25][26] (этот термин следует признать весьма неудачным из-за его неоднозначности[27][28])
  5. Квантовая нелокальность[29]
  6. Квантовая перепутанность[30]
  7. Несепарабельность[31] (как уточнение к «квантовым корреляциям»)
  8. Квантовая сцепленность[1]

Такое разнообразие можно объяснить несколькими причинами, в том числе объективным наличием двух обозначаемых объектов: а) само состояние (англ. quantum entanglement) и б) наблюдаемые эффекты в этом состоянии (англ. spooky action at a distance), которые во многих русскоязычных работах различаются по контексту, а не терминологически.

Математическая формулировка

Получение запутанных квантовых состояний

В простейшем случае источником S потоков запутанных фотонов служит определённый нелинейный материал, на который направляется лазерный поток определённой частоты и интенсивности (схема с одним эммитером)[32]. В результате спонтанного параметрического рассеяния (СПР) на выходе получаются два конуса поляризации H и V, несущие пары фотонов в запутанном квантовом состоянии (бифотонов)[33].

Выбор конкретного материала зависит от задач эксперимента, используемой частоты и мощности[35]. В таблице ниже приводятся лишь некоторые часто используемые неорганические нелинейные кристаллы с регулярной доменной структурой (англ.)русск.[36] (РДС-кристаллы, англ. periodically poled):

Вещество Формула Аббревиатура
бета-борат бария β-BaB2O4 BBO
триборат лития LiB3O5 LBO
титанил фосфат калия KTiOPO4 KTP
ниобат калия KNbO3

Интересным и сравнительно молодым направлением стали нелинейные кристаллы на органической основе[37][38]. Предполагалось, что органические составляющие живых организмов должны обладать сильными нелинейными свойствами из-за позиций орбиталей в π-связях. Эти предположения подтвердились, и несколькими группами исследователей были получены высококачественные нелинейные кристаллы путём дегидратации насыщенных растворов аминокислот. Некоторые из этих кристаллов:

Вещество Формула Аббревиатура
L-аргинин малеин дигидрат C6H14N4O2 + C4H4O4 LAMD
2-L-метионин малеин дигидрат C5H11NO2S + C4H4O4 LMMM

LMMM из таблицы получается кристаллизацией смеси в пропорции два к одной L-метионина (метаболическое средство) и малеиновой кислоты (пищевая промышленность), то есть из массово производимых веществ. При этом эффективность правильно выращенного кристалла составляет 90% от более дорогого и труднодоступного неорганического KTP[38].

Применение

«Сверхсветовой коммуникатор» Херберта

Всего через год после эксперимента Аспэ, в 1982 году, американский физик Ник Херберт (англ.)русск. предложил журналу «Foundations of Physics» статью с идеей своего «сверхсветового коммуникатора на основе нового типа квантовых измерений» FLASH (First Laser-Amplified Superluminal Hookup). По позднейшему рассказу Ашера Переса[39], бывшего в тот момент одним из рецензентов журнала, ошибочность идеи была очевидной, но, к своему удивлению, он не нашёл конкретной физической теоремы, на которую мог бы кратко сослаться. Поэтому он настоял на публикации статьи, так как это «пробудит заметный интерес, а нахождение ошибки приведёт к заметному прогрессу в нашем понимании физики». Статья была напечатана[40], и в результате развернувшейся дискуссии Вуттерсом (англ.)русск., Зуреком (англ.)русск. и Диксом (англ.)русск. была сформулирована и доказана теорема о запрете клонирования. Так излагается история у Переса в его статье, опубликованной 20 лет спустя после описываемых событий.

Теорема о запрете клонирования утверждает невозможность создания идеальной копии произвольного неизвестного квантового состояния. Весьма упрощая ситуацию, можно привести пример с клонированием живых существ. Можно создать идеальную генетическую копию овцы, но нельзя «клонировать» жизнь и судьбу прототипа.

Учёные обычно скептически относятся к проектам со словом «сверхсветовой» в названии. К этому добавился неортодоксальный научный путь самого Херберта. В 70-х он вместе с приятелем из Xerox PARC сконструировал «метафазовую печатную машинку» для «коммуникации с бесплотными духами»[41] (результаты интенсивных экспериментов были признаны участниками непоказательными). А в 1985 Херберт написал книгу о метафизическом в физике[42]. В целом, события 1982 года достаточно сильно скомпрометировали идеи квантовой коммуникации в глазах потенциальных исследователей, и до конца XX века существенного прогресса в этом направлении не наблюдалось.

Квантовая коммуникация

Теория квантовой механики запрещает передачу информации со сверхсветовой скоростью. Это объясняется принципиально вероятностным характером измерений и теоремой о запрете клонирования. Представим разнесённых в пространстве наблюдателей А и Б, у которых имеется по экземпляру квантово-запутанных ящиков с котами Шрёдингера, находящимися в суперпозиции «жив-мёртв». Если в момент t1 наблюдатель А открывает ящик, то его кот равновероятно оказывается либо живым, либо мёртвым. Если живым, то в момент t2 наблюдатель Б открывает свой ящик и находит там мёртвого кота. Проблема в том, что до исходного измерения нет возможности предсказать, у кого именно что окажется, а после один кот жив, другой мёртв, и назад ситуацию не повернуть.

Обход классических ограничений был найден[43] в 2006 году Коротковым и Джорданом из Калифорнийского университета за счёт слабых квантовых измерений (англ. weak quantum measurement). Продолжая аналогию, оказалось, что можно не распахивать ящик, а лишь чуть-чуть приподнять его крышку и подсмотреть в щёлку. Если состояние кота неудовлетворительно, то крышку можно сразу захлопнуть и попробовать ещё раз. В 2008 году другая группа исследователей из Калифорнийского университета объявила[44] об успешной экспериментальной проверке данной теории. «Реинкарнация» кота Шрёдингера стала возможной. Наблюдатель А теперь может приоткрывать и закрывать крышку ящика, пока не убедится, что у наблюдателя Б кот окажется в нужном состоянии.

Открытие возможности «обратного коллапса» во многом перевернуло представления о базовых принципах квантовой механики:

Возникла идея не просто передачи потоков запутанных частиц в разнесённые в пространстве приёмники, но и хранения таких частиц неопределённо долгое время в приёмниках в состоянии суперпозиции для «последующего использования». Ещё из работ Раньяды 1990 года[45] было известно о таких расслоениях Хопфа, которые могли быть топологическими решениями уравнений Максвелла. В переводе на обычный язык это означало, что математически могут существовать ситуации, при которых пучок фотонов или отдельный фотон будет бесконечно циркулировать по сложной замкнутой траектории, выписывая тор в пространстве. До недавнего времени это оставалось просто ещё одной математической абстракцией. В 2008 году американские исследователи занялись анализом получаемых расслоений и их возможной физической реализацией. В результате[46] были найдены стабильные решения и технические способы, позволяющие реализовать такие решения. Оказалось, что пучок света действительно можно «свернуть в бублик» (точнее — в замкнутый тороидальный узел) и «положить на место», и такое состояние останется стабильным и самоподдерживающимся. На сентябрь 2011 об успешных лабораторных реализациях не сообщалось, но теперь это вопрос технических трудностей, а не физических ограничений.

Помимо проблемы «складирования» запутанных частиц остаётся нерешённой проблема декогеренции, то есть утраты частицами запутанности со временем из-за взаимодействия с окружающей средой. Даже в физическом вакууме остаются так называемые виртуальные частицы. Несмотря на эпитет «виртуальный» в названии, они вполне успешно деформируют физические тела, как показывает эффект Казимира, следовательно, теоретически могут влиять на запутанные частицы.

Квантовая телепортация

Квантовая телепортация (не путать с телепортацией), основанная на запутанных квантовых состояниях, используется в таких интенсивно исследуемых областях, как квантовые вычисления и квантовая криптография.

Идея квантовых вычислений была впервые предложена Ю. И. Маниным в 1980 году. На сентябрь 2011 года полномасштабный квантовый компьютер является пока гипотетическим устройством, построение которого связано со многими вопросами квантовой теории и с решением проблемы декогеренции. Ограниченные (в несколько кубитов) квантовые «миникомпьютеры» уже создаются в лабораториях. Первое удачное применение с полезным результатом продемонстрировано международным коллективом учёных в 2009 году. По квантовому алгоритму была определена энергия молекулы водорода[47]. Впрочем, некоторыми исследователями высказывается мнение, что для квантовых компьютеров запутанность является, наоборот, нежелательным побочным фактором[48].

Квантовая криптография используется для пересылки зашифрованных сообщений по двум каналам связи, квантовому и традиционному. Первый протокол квантового распределения ключа BB84 был предложен[49] Беннетом (англ.)русск. и Брассардом (англ.)русск. в 1984 году. С тех пор квантовая криптография являлась одним из бурно развивающихся прикладных направлений квантовой физики, и к 2011 году несколькими лабораториями и коммерческими фирмами были созданы работающие прототипы передатчиков и приёмников[50].
Следует отметить, что идея и привлекательность квантовой криптографии базируется не на какой-то повышенной или же «абсолютной» криптостойкости, а на гарантированном уведомлении, как только кто-либо попытается перехватить сообщение. Последнее же базируется на известных к началу разработок законах квантовой физики и в первой очереди, на необратимости коллапса волновой функции[51]. В связи с открытием и успешным тестированием обратимых слабых квантовых измерений основы надёжности квантовой криптографии оказались под большим вопросом[52][53]. Возможно, квантовая криптография войдёт в историю, как система, для которой прототип «абсолютно надёжного» передатчика и прототип перехватчика сообщений были созданы почти одновременно и до начала практического использования самой системы.

Физическая интерпретация явления

Копенгагенская интерпретация

Интерпретация Бома

Интерпретация Бома

Многомировая интерпретация

Многомировая интерпретация позволяет[54] представить запутанные частицы как проекции всех возможных состояний одной и той же частицы из параллельных вселенных.

Непротиворечивые истории

Непротиворечивые истории (англ.)русск.

Объективная редукция Джирарди — Римини — Вебера

Объективная редукция Джирарди — Римини — Вебера (англ.)русск.

Транзакционная интерпретация

Транзакционная интерпретация (англ.)русск. (TI), предложенная Крамером (англ.)русск. в 1986 году[55], предполагает наличие исходящих от частиц симметричных стоячих волн, направленных в прошлое и будущее по оси времени. Тогда взаимодействие распространяется по волнам без нарушения лимита скорости света, но для временно́го фрейма наблюдателя событие (транзакция) происходит «мгновенно».

Явление в религии и в массовой культуре


Источник: dic.academic.ru

Запутанность как магическая связь

После того, как были открыты необычные эффекты, происходящие в микромире, ученые пришли к интересному теоретическому предположению. Оно именно следовало из основ квантовой теории.

В прошлой статье я рассказывал о том, что электрон ведет себя очень странно.

Но  запутанность квантовых, элементарных частиц вообще противоречит какому-либо здравому смыслу, выходит за рамки любого понимания.

Если они взаимодействовали друг с другом, то после разъединения между ними остается магическая связь, даже если их разнести на любое, сколь угодно большое  расстояние.

Магическая в том смысле, что информация между ними передается мгновенно.

Как известно из квантовой механики частица до измерения находится в суперпозиции, то есть имеет сразу несколько параметров, размыта в пространстве, не имеет точное значение спина. Если над одной  из пары ранее взаимодействующих частиц произвести измерение, то есть произвести коллапс волновой функции, то вторая сразу, мгновенно отреагирует на это измерение. И не важно, какое расстояние между ними. Фантастика, не правда ли.

Как известно из теории относительности  Эйнштейна ничто не может превышать скорость света. Чтобы информация дошла от одной частицы до второй, нужно по крайне мере затратить время прохождения света. Но одна частица именно мгновенно реагирует на измерение второй. Информация при скорости света дошла бы до нее уже позже. Все это не укладывается в здравый смысл.

Если разделить пару  элементарных частичек с нулевым общим параметром спина, то одна  должна иметь отрицательный спин, а вторая положительный. Но до измерения  значение спина находится в суперпозиции. Как только мы измерили спин у первой частички, увидели, что он имеет положительное значение, так сразу вторая приобретает отрицательный спин. Если же наоборот первая частичка приобретает отрицательное значение спина, то вторая мгновенно положительное значение.

Или такая аналогия.

У нас имеется два шара. Один черный, другой белый. Мы их накрыли непрозрачными стаканами, не видим, где какой. Мешаем как в игре наперстки.

Если открыли один стакан и увидели, что там белый шар, значит во втором стакане черный. Но сначала мы не знаем, где какой.

Так и с элементарными частичками. Но они до того, как на них посмотреть, находятся в суперпозиции. До измерения шары как бы бесцветны. Но разрушив  суперпозицию одного шара и увидев, что он белый, то второй сразу становится черным. И это происходит мгновенно, будь хоть один шар на земле, а второй в другой галактике. Чтобы свет дошел от одного шара до другого в нашем случае, допустим нужно сотни лет, а второй шар узнает, что произвели измерение над вторым, повторяю, мгновенно. Между ними запутанность.

Понятно, что Эйнштейн, да и многие другие физики не принимали такой исход событий, то есть квантовую запутанность. Он считал выводы квантовой физики неверными, неполными, предполагал, что не хватает каких-то скрытых переменных.

Вышеописанный парадокс Эйнштейна наоборот придумал, чтобы показать, что выводы квантовой механики не верны, потому что запутанность противоречит здравому смыслу.

Этот парадокс назвали парадокс Эйнштейна — Подольского — Розена, сокращённо ЭПР-парадокс.

Но проведенные эксперименты с запутанностью уже позже    А. Аспектом и другими учеными, показали, что Эйнштейн был не прав. Квантовая запутанность существует.

И это уже были не теоретические предположения, вытекающие из уравнений, а реальные факты множества  экспериментов по квантовой запутанности. Ученые это увидели вживую, а Эйнштейн умер, так и не узнав правду.

Частицы действительно взаимодействуют мгновенно, ограничения по скорости света им не помеха. Мир оказался куда интереснее и сложнее.

При квантовой запутанности происходит, повторю, мгновенная передача информации, образуется магическая связь.

Но как такое может быть?

Сегодняшняя квантовая физика отвечает на этот вопрос изящным образом. Между частицами происходит мгновенная связь не из-за того, что информация передается очень быстро, а потому что на более глубоком уровне они просто не разделены, а все еще находятся вместе. Они находятся в так называемой квантовой запутанности.

То есть  состояние запутанности это такое состояние системы, где по каким-то параметрам или значениям,  она не может быть разделена на отдельные, полностью самостоятельные  части.

Например, электроны после взаимодействия могут быть разделены на большое расстояние в пространстве, но их спины находятся все еще вместе. Поэтому во время экспериментов спины мгновенно согласуются между собой.
 

 
Понимаете, к чему это ведет?

Сегодняшние познания современной квантовой физики на основе теории декогеренции сводятся к одному.

Существует более глубокая, непроявленная реальность. А то, что мы наблюдаем как привычный классический мир лишь малая часть, частный случай более фундаментальной квантовой реальности.

В ней нет пространства, времени, каких-то параметров частиц, а лишь информация о них, потенциальная возможность их проявления.

Именно этот факт изящно и просто объясняет, почему возникает коллапс волновой функции, рассмотренный в предыдущей статье, квантовую запутанность и другие чудеса микромира.

Сегодня, говоря о квантовой запутанности, вспоминают  потусторонний мир.

То есть на более фундаментальном уровне элементарная частица непроявленная. Она находится одновременно в нескольких точках пространства, имеет несколько значений спинов.

Затем по каким-то параметрам она может проявиться в нашем классическом мире в ходе  измерения. В рассмотренном выше эксперименте две частицы уже имеют конкретное значение координат  пространства, но спины их находятся все еще  в квантовой реальности, непроявленные. Там нет пространства и времени, поэтому спины частиц сцеплены вместе, несмотря на огромное расстояние между ними.

А когда мы смотрим, какой спин у частицы, то есть производим измерение, мы как бы вытаскиваем спин из квантовой реальности в наш обычный мир. А нам кажется, что частицы обмениваются информацией мгновенно. Просто они были все еще вместе по одному параметру, хоть и находились далеко друг от друга. Их раздельность на самом деле есть иллюзия.

Все это кажется странным, непривычным, но этот факт уже подтверждается многими экспериментами. На основе магической запутанности создаются квантовые компьютеры.

Реальность оказалась намного сложнее и интереснее.

Принцип квантовой запутанности не стыкуется с обычным нашим взглядом на мир.

Мир квантов

Вот как объясняет квантовую запутанность физик-ученый Д.Бом.

Допустим, мы наблюдаем за рыбой в аквариуме. Но в силу каких-то ограничений, мы можем смотреть не на аквариум, как он есть, а лишь на его проекции, снимаемые двумя камерами спереди и сбоку. То есть мы наблюдаем за рыбой, смотря на два телевизора. Нам кажутся рыбы разными, так как мы снимаем ее одной камерой в анфас, другой в профиль. Но чудесным образом их движения четко согласуются. Как только рыба с первого экрана поворачивается, вторая мгновенно делает также поворот. Мы удивляемся, не догадываясь, что это одна и та же рыба.

Так и в квантовом эксперименте с двумя частицами. Из-за своих ограничений нам кажется, что спины двух, ранее взаимодействующих частиц, не зависимы друг от друга, ведь теперь частицы находятся далеко друг от друга. Но на самом деле они все еще вместе, но находятся в квантовой реальности, в нелокальном источнике. Мы просто смотрим не на реальность, как она есть на самом деле, а с искажением, в рамках классической физики.

 

Квантовая телепортация простыми словами

Когда ученые узнали о квантовой запутанности и мгновенной передаче информации, многие задались вопросом: можно  ли осуществить телепортацию?

Это оказалось действительно возможным.

Уже проведено множество экспериментов по телепортации.

Суть метода легко можно понять, если вы поняли общий принцип запутанности.

Имеется частица, например электрон А и две пары запутанных электронов В и С.  Электрон А и пара В, С находятся в разных точках пространства, неважно как далеко. А теперь переведем в квантовую запутанность частички А и В, то есть объединим их. Теперь С становится точно такой же как А, потому что общее их состояние  не меняется. То есть частица А как бы телепортируется в частицу С.

Сегодня проведены уже более сложные опыты по телепортации.

Конечно, все опыты пока проводятся только с элементарными частицами. Но согласитесь, это уже невероятно. Ведь все мы состоим из тех же частиц,  ученые говорят, что телепортация макрообъектов теоретически ничем не отличается. Нужно лишь решить множество технических моментов, а это лишь вопрос времени. Может быть, человечество дойдет в своем развитии до   способности телепортировать большие объекты, да и самого человека.
 

 

Квантовая реальность

Квантовая запутанность есть целостность, неразрывность, единение на более глубоком уровне.

Если по каким-то параметрам частицы находятся в квантовой запутанности, то по этим параметрам их просто нельзя разделить на отдельные части. Они взаимозависимы. Такие свойства просто фантастические с точки зрения привычного мира, запредельные, можно сказать потусторонние и трансцендентные. Но это факт, от которого уже никуда не деться. Пора это уже признать.

Но к чему все это ведет?

Оказывается, о таком положении вещей давно говорили многие духовные учения  человечества.

Видимый нами мир, состоящий из материальных объектов это не основа реальности, а лишь малая ее часть и не самая главная. Существует трансцендентная реальность, которая  задает, определяет все, что происходит с нашим миром, а значит и с нами.

Именно там кроются настоящие ответы на извечные вопросы о смысле жизни, настоящего развития человека, обретения счастья и здоровья.

И это не пустые слова.

Все это приводит к переосмыслению жизненных ценностей, пониманию того, что кроме бессмысленной гонкой за материальными благами есть что-то более важное и высокое. И эта реальность не где-то там, она окружает нас повсюду, она пронизывает нас, она как говорится «на кончиках наших пальцев».

Но давайте об этом поговорим в следующих статьях.

А сейчас посмотрите видео о квантовой запутанности.
 

 
От квантовой запутанности мы плавно переходим к теории декогеренции. Об этом в следующей статье.
 

Источник: zslife.ru

Квантовая запутанность – одно из самых сложных понятий в науке, но основные её принципы просты. А если понять её, запутанность открывает путь к лучшему пониманию таких понятий, как множественность миров в квантовой теории.

Запутанность квантовых частиц

Чарующей аурой загадочности окутано понятие квантовой запутанности, а также (каким-то образом) связанное с ним требование квантовой теории о необходимости наличия «многих миров». И, тем не менее, по сути своей это научные идеи с приземлённым смыслом и конкретными применениями. Я хотел бы объяснить понятия запутанности и множества миров настолько просто и ясно, насколько знаю их сам.

I

Запутанность считается явлением, уникальным для квантовой механики – но это не так. На самом деле, для начала будет более понятным (хотя это и необычный подход) рассмотреть простую, не квантовую (классическую) версию запутанности. Это позволит нам отделить тонкости, связанные с самой запутанностью, от других странностей квантовой теории.

Запутанность появляется в ситуациях, в которых у нас есть частичная информация о состоянии двух систем. К примеру, нашими системами могут стать два объекта – назовём их каоны. «К» будет обозначать «классические» объекты. Но если вам очень хочется представлять себе что-то конкретное и приятное – представьте, что это пирожные.

Наши каоны будут иметь две формы, квадратную или круглую, и эти формы будут обозначать их возможные состояния. Тогда четырьмя возможными совместными состояниями двух каонов будут: (квадрат, квадрат), (квадрат, круг), (круг, квадрат), (круг, круг). В таблице указана вероятность нахождения системы в одном из четырёх перечисленных состояний.

Запутанность квантовых частиц

Мы будем говорить, что каоны «независимы», если знание о состоянии одного из них не даёт нам информации о состоянии другого. И у этой таблицы есть такое свойство. Если первый каон (пирожное) квадратный, мы всё ещё не знаем форму второго. И наоборот, форма второго ничего не говорит нам о форме первого.

С другой стороны, мы скажем, что два каона запутаны, если информация об одном из них улучшает наши знания о другом. Вторая табличка покажет нам сильную запутанность. В этом случае, если первый каон будет круглым, мы будем знать, что второй тоже круглый. А если первый каон квадратный, то таким же будет и второй. Зная форму одного, мы однозначно определим форму другого.

Запутанность квантовых частиц

Квантовая версия запутанности выглядит, по сути, также – это отсутствие независимости. В квантовой теории состояния описываются математическими объектами под названием волновая функция. Правила, объединяющие волновые функции с физическими возможностями, порождают очень интересные сложности, которые мы обсудим позже, но основное понятие о запутанном знании, которое мы продемонстрировали для классического случая, остаётся тем же.

Хотя пирожные нельзя считать квантовыми системами, запутанность квантовых систем возникает естественным путём – например, после столкновений частиц. На практике незапутанные (независимые) состояния можно считать редкими исключениями, поскольку при взаимодействии систем между ними возникают корреляции.

Рассмотрим, к примеру, молекулы. Они состоят из подсистем – конкретно, электронов и ядер. Минимальное энергетическое состояние молекулы, в котором она обычно и находится, представляет собой сильно запутанное состояние электронов и ядра, поскольку расположение этих составляющих частиц никак не будет независимым. При движении ядра электрон движется с ним.

Вернёмся к нашему примеру. Если мы запишем Φ■, Φ● как волновые функции, описывающие систему 1 в её квадратных или круглых состояниях и ψ■, ψ● для волновых функций, описывающих систему 2 в её квадратных или круглых состояниях, тогда в нашем рабочем примере все состояния можно описать, как:

Независимые: Φ■ ψ■ + Φ■ ψ● + Φ● ψ■ + Φ● ψ●

Запутанные: Φ■ ψ■ + Φ● ψ●

Независимую версию также можно записать, как:

(Φ■ + Φ●)(ψ■ + ψ●)

Отметим, как в последнем случае скобки чётко разделяют первую и вторую системы на независимые части.

Существует множество способов создания запутанных состояний. Один из них – измерить составную систему, дающую вам частичную информацию. Можно узнать, например, что две системы договорились быть одной формы, не зная при этом, какую именно форму они выбрали. Это понятие станет важным чуть позже.

Более характерные последствия квантовой запутанности, такие, как эффекты Эйнштейна-Подольского-Розена (EPR) и Гринберга-Хорна-Зейлингера (GHZ), возникают из-за её взаимодействия ещё с одним свойством квантовой теории под названием «принцип дополнительности». Для обсуждения EPR и GHZ позвольте мне сначала представить вам этот принцип.

До этого момента мы представляли, что каоны бывают двух форм (квадратные и круглые). Теперь представим, что ещё они бывают двух цветов – красного и синего. Рассматривая классические системы, например, пирожные, это дополнительное свойство означало бы, что каон может существовать в одном из четырёх возможных состояний: красный квадрат, красный круг, синий квадрат и синий круг.

Но квантовые пирожные – квантожные… Или квантоны… Ведут себя совсем по-другому. То, что квантон в каких-то ситуациях может обладать разной формой и цветом не обязательно означает, что он одновременно обладает как формой, так и цветом. Фактически, здравый смысл, которого требовал Эйнштейн от физической реальности, не соответствует экспериментальным фактам, что мы скоро увидим.

Мы можем измерить форму квантона, но при этом мы потеряем всю информацию о его цвете. Или мы можем измерить цвет, но потеряем информацию о его форме. Согласно квантовой теории, мы не можем одновременно измерить и форму и цвет. Ничей взгляд на квантовую реальность не обладает полнотой; приходится принимать во внимание множество разных и взаимоисключающих картин, у каждой из которых есть своё неполное представление о происходящем. Это и есть суть принципа дополнительности, такая, как её сформулировал Нильс Бор.

В результате квантовая теория заставляет нас быть осмотрительными в приписывании свойствам физической реальности. Во избежание противоречий приходится признать, что:

Не существует свойства, если его не измерили.
Измерение – активный процесс, изменяющий измеряемую систему

Запутанность квантовых частиц

II

Теперь опишем две образцовые, но не классические, иллюстрации странностей квантовой теории. Обе были проверены в строгих экспериментах (в реальных экспериментах люди меряют не формы и цвета пирожных, а угловые моменты электронов).

Альберт Эйнштейн, Борис Подольский и Натан Розен (EPR) описали удивительный эффект, возникающий при запутанности двух квантовых систем. EPR-эффект объединяет особую, экспериментально достижимую форму квантовой запутанности с принципом дополнительности.

EPR-пара состоит из двух квантонов, у каждого из которых можно измерить форму или цвет (но не то и другое сразу). Предположим, что у нас есть множество таких пар, все они одинаковые, и мы можем выбирать, какие измерения мы проводим над их компонентами. Если мы измерим форму одного из членов EPR-пары, мы с одинаковой вероятностью получим квадрат или круг. Если измерим цвет, то с одинаковой вероятностью получим красный или синий.

Интересные эффекты, казавшиеся EPR парадоксальными, возникают, когда мы проводим измерения обоих членов пары. Когда мы меряем цвет обоих членов, или их форму, мы обнаруживаем, что результаты всегда совпадают. То есть, если мы обнаружим, что один из них красный и затем меряем цвет второго, мы также обнаруживаем, что он красный – и т.п. С другой стороны, если мы измеряем форму одного и цвет другого, никакой корреляции не наблюдается. То есть, если первый был квадратом, то второй с одинаковой вероятностью может быть синим или красным.

Согласно квантовой теории, мы получим такие результаты, даже если две системы будет разделять огромное расстояние и измерения будут проведены почти одновременно. Выбор типа измерений в одном месте, судя по всему, влияет на состояние системы в другом месте. Это «пугающее дальнодействие», как называл его Эйнштейн, по-видимому, требует передачу информации – в нашем случае, информации о проведённом измерении – со скоростью, превышающей скорость света.

Но так ли это? Пока я не узнаю, какой результат получили вы, я не знаю, чего ожидать мне. Я получаю полезную информацию, когда я узнаю ваш результат, а не когда вы проводите измерение. И любое сообщение, содержащее полученный вами результат, необходимо передать каким-либо физическим способом, медленнее скорости света.

При дальнейшем изучении парадокс ещё больше разрушается. Давайте рассмотрим состояние второй системы, если измерение первой дало красный цвет. Если мы решим мерить цвет второго квантона, мы получим красный. Но по принципу дополнительности, если мы решим измерить его форму, когда он находится в «красном» состоянии, у нас будут равные шансы на получение квадрата или круга. Поэтому, результат EPR логически предопределён. Это просто пересказ принципа дополнительности.

Нет парадокса и в том, что удалённые события коррелируют. Ведь если мы положим одну из двух перчаток из пары в коробки и отправим их в разные концы планеты, неудивительно, что посмотрев в одну коробку, я могу определить, на какую руку предназначена другая перчатка. Точно так же, во всех случаях корреляция пар EPR должна быть зафиксирована на них, когда они находятся рядом и потому они могут выдержать последующее разделение, будто бы имея память. Странность EPR-парадокса не в самой по себе возможности корреляции, а в возможности её сохранения в виде дополнений.

III

Дэниел Гринбергер, Майкл Хорн и Антон Зейлингер открыли ещё один прекрасный пример квантовой запутанности. ОН включает три наших квантона, находящихся в специально подготовленном запутанном состоянии (GHZ-состоянии). Мы распределяем каждый из них разным удалённым экспериментаторам. Каждый из них выбирает, независимо и случайно, измерять ли цвет или форму и записывает результат. Эксперимент повторяют многократно, но всегда с тремя квантонами в GHZ-состоянии.

Каждый отдельно взятый экспериментатор получает случайные результаты. Измеряя форму квантона, он с равной вероятностью получает квадрат или круг; измеряя цвет квантона, он с равной вероятностью получает красный или синий. Пока всё обыденно.

Но когда экспериментаторы собираются вместе и сравнивают результаты, анализ показывает удивительный результат. Допустим, мы будем называть квадратную форму и красный цвет «добрыми», а круги и синий цвет – «злыми». Экспериментаторы обнаруживают, что если двое из них решили измерить форму, а третий – цвет, тогда либо 0, либо 2 результата измерений получаются «злыми» (т.е. круглыми или синими). Но если все трое решают измерить цвет, то либо 1 либо 3 измерения получаются злыми. Это предсказывает квантовая механика, и именно это и происходит.

Вопрос: количество зла чётное или нечётное? В разных измерениях реализовываются обе возможности. Нам приходится отказаться от этого вопроса. Не имеет смысла рассуждать о количестве зла в системе без связи с тем, как его измеряют. И это приводит к противоречиям.

Эффект GHZ, как описывает его физик Сидни Колман, это «оплеуха от квантовой механики». Он разрушает привычное, полученное из опыта ожидание того, что у физических систем есть предопределённые свойства, независимые от их измерения. Если бы это было так, то баланс доброго и злого не зависел бы от выбора типов измерений. После того, как вы примете существование GHZ-эффекта, вы его не забудете, а ваш кругозор будет расширен.

IV

Пока что мы рассуждаем о том, как запутанность не позволяет назначить уникальные независимые состояния нескольким квантонам. Такие же рассуждения применимы к изменениям одного квантона, происходящим со временем.

Мы говорим об «запутанных историях», когда системе невозможно присвоить определённое состояние в каждый момент времени. Так же, как в традиционной запутанности мы исключаем какие-то возможности, мы можем создать и запутанные истории, проводя измерения, собирающие частичную информацию о прошлых событиях. В простейших запутанных историях у нас есть один квантон, изучаемый нами в два разных момента времени. Мы можем представить ситуацию, когда мы определяем, что форма нашего квантона оба раза была квадратной, или круглой оба раза, но при этом остаются возможными обе ситуации. Это темпоральная квантовая аналогия простейшим вариантам запутанности, описанным ранее.

Используя более сложный протокол, мы можем добавить чуть-чуть дополнительности в эту систему, и описать ситуации, вызывающие «многомировое» свойство квантовой теории. Наш квантон можно подготовить в красном состоянии, а затем измерить и получить голубое. И как в предыдущих примерах, мы не можем на постоянной основе присвоить квантону свойство цвета в промежутке между двумя измерениями; нет у него и определённой формы. Такие истории реализовывают, ограниченным, но полностью контролируемым и точным способом, интуицию, свойственную картинке множественности миров в квантовой механике. Определённое состояние может разделиться на две противоречащие друг другу исторические траектории, которые затем снова соединяются.

Эрвин Шрёдингер, основатель квантовой теории, скептически относившийся к её правильности, подчёркивал, что эволюция квантовых систем естественным образом приводит к состояниям, измерение которых может дать чрезвычайно разные результаты. Его мысленный эксперимент с «котом Шрёдингера» постулирует, как известно, квантовую неопределённость, выведенную на уровень влияния на смертность кошачьих. До измерения коту невозможно присвоить свойство жизни (или смерти). Оба, или ни одно из них, существуют вместе в потустороннем мире возможностей.

Повседневный язык плохо приспособлен для объяснения квантовой дополнительности, в частности потому, что повседневный опыт её не включает. Практические кошки взаимодействуют с окружающими молекулами воздуха, и другими предметами, совершенно по-разному, в зависимости от того, живы они или мертвы, поэтому на практике измерение проходит автоматически, и кот продолжает жить (или не жить). Но истории с запутанностью описывают квантоны, являющиеся котятами Шрёдингера. Их полное описание требует, чтобы мы принимали к рассмотрению две взаимоисключающие траектории свойств.

Контролируемая экспериментальная реализация запутанных историй – вещь деликатная, поскольку требует сбора частичной информации о квантонах. Обычные квантовые измерения обычно собирают всю информацию сразу – к примеру, определяют точную форму или точный цвет – вместо того, чтобы несколько раз получить частичную информацию. Но это можно сделать, хотя и с чрезвычайными техническими трудностями. Этим способом мы можем присвоить определённый математический и экспериментальный смысл распространению концепции «множественности миров» в квантовой теории, и продемонстрировать её реальность.

Источник: habr.com


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.