Время жизни элементарных частиц


Если сильные распады группировались в районе йоктосекунд, электромагнитные — в окрестностях аттосекунды, то слабые распады «отдуваются за всех» — они охватывают аж 27 порядков на шкале времен!

На краях этого невообразимо широкого диапазона находятся два «экстремальных» случая.

  • Распады топ-кварка и частиц-переносчиков слабого взаимодействия (W и Z-бозонов) происходят примерно за 0,3 ис = 3·10−25с. Это самые быстрые распады среди всех элементарных частиц и вообще самые быстрые процессы, достоверно известные современной физике. Получается так потому, что это распады с самым большим энерговыделением.

  • Самая долгоживущая элементарная частица, нейтрон, живет примерно 15 минут. Такое огромное по меркам микромира время объясняется тем, что этот процесс (бета-распад нейтрона на протон, электрон и антинейтрино) обладает очень маленьким энерговыделением. Это энерговыделение такое слабое, что в подходящих условиях (например, внутри атомного ядра) этот распад уже может быть энергетически невыгоден, и тогда нейтрон становится полностью стабильным. Атомные ядра, все вещество вокруг нас, да и мы сами существуем только благодаря этой удивительной слабости бета-распада.

В промежутке между этими крайностями большинство слабых распадов тоже идут более-менее компактно. Их можно разбить на две группы, которые мы условно назовем: быстрые слабые распады и медленные слабые распады.

Быстрые — это распады длительностью около пикосекунды. Так вот удивительно сложились числа в нашем мире, что в узкий диапазон значений от 0,4 до 2 пс попадают времена жизни сразу нескольких десятков элементарных частиц. Это так называемые очарованные и прелестные адроны — частицы, которые в своем составе имеют тяжелый кварк.

Пикосекунды — это замечательно, это просто бесценно с точки зрения эксперимента на коллайдерах! Дело в том, что за 1 пс частица успеет пролететь треть миллиметра, а такие большие дистанции современный детектор измеряет легко. Благодаря этим частицам картина столкновения частиц на коллайдере становится «легко читаемой» — вот тут произошло столкновение и рождение большого числа адронов, а вон там, чуть поодаль, произошли вторичные распады. Время жизни становится напрямую измеримо, а значит, появляется возможность узнать, что это была за частица, и уже потом использовать эту информацию для более сложного анализа.


Медленные слабые распады — это распады, которые начинаются от сотни пикосекунд и простираются на весь наносекундный диапазон. Сюда попадает класс так называемых «странных частиц» — многочисленных адронов, содержащих в своем составе странный кварк. Несмотря на свое название, для современных экспериментов они совсем не странные, а наоборот, самые обыденные частицы. Они просто выглядели странными в 50-х годах прошлого века, когда физики неожиданно стали их открывать одну за другой и не совсем понимали их свойства. Кстати, именно изобилие странных адронов и подтолкнуло физиков полвека назад к идее кварков.

С точки зрения современного эксперимента с элементарными частицами наносекунды — это очень много. Это так много, что вылетевшая из ускорителя частица просто не успевает распасться, а пронзает детектор, оставляя в нём свой след. Конечно, она потом застрянет где-то в веществе детектора или в горных породах вокруг него и там распадется. Но физиков этот распад уже не заботит, их интересует только тот след, который эта частица оставила внутри детектора. Так что для современных экспериментов такие частицы выглядят почти как стабильные; их поэтому называют «промежуточным» термином — метастабильные частицы.


Ну а самой долгоживущей частицей, не считая нейтрона, является мюон — этакий «собрат» электрона. Он не участвует в сильном взаимодействии, он не распадается за счет электромагнитных сил, поэтому ему остаются только слабые взаимодействия. А поскольку он довольно легкий, он живет 2 микросекунды — целая эпоха по масштабам элементарных частиц.

Источник: elementy.ru

Из истории вопроса

Первым из тех, кто задумался о существовании мельчайших частиц, из которых состоят все вещества и окружающие предметы, был древнегреческий философ Демокрит. Он был первым, кто высказал предположение о существовании фундаментальных частиц. Согласно письменным источникам, случилось это в 

4

веке до нашей эры. Демокрит дал название атому и определил, что это неделимая частица материи.

В течение ряда веков понятие об атомах носило скорее философский, чем физический смысл. И только начиная с

19

века представление об атомах стали использовать сначала для объяснения химических, а затем и физических процессов.

В

30

-е годы


19

столетия Макс Фарадей ввел в обиход понятие иона в рамках теории электролиза, а также выполнил изменение элементарного заряда. К концу столетия Антуан Анри Беккерель открыл явление радиоактивности, Джозеф Томсон установил существование электронов, Эрнест Резерфорд —

α

-частиц. В первые пять лет

20

века Альберт Эйнштейн разработал учение о фотонах (квантах электромагнитного поля). Все эти открытия были бы невозможны без понятия об атомах.

В течение первой трети

20

века было установлено, что атом имеет сложное строение, которое предполагает наличие ядра и расположенных вокруг него электронов. Эрнест Резерфорд предложил орбитальную модель строения атома, согласно которой электроны движутся вокруг ядра по определенным орбитам. Он же во время опытов по расщеплению ядер атомов установил существование протонов.

Открытие нейтронов принадлежит известному английскому физику Джеймсу Чедвику. Он установил, что ядра атомов имеют сложное строение. Так возникла протон-нейтронная теория строения ядер, разработкой которой занимались немецкий исследователь Вейнер Гейзенберг и наш соотечественник, физик-теоретик, лауреат Сталинской премии Дмитрий Дмитриевич Иваненко.

Существование позитрона было предсказано англичанином Полем Дираком. Эта положительно заряженная частица, имеющая такую же массу и такой же (по модулю) заряд, что и электрон, была открыта американским физиком-экспериментатором Карлом Дейвидом Андерсеном в космических лучах.


В тридцатых годах

20

-го века были открыты взаимные превращения нейтронов и протонов. Было установлено, что элементарные частицы не являются неизменными. В это же время были открыты мюоны– частицы, масса которых составляет

207

электронных масс, а затем и пионы – частицы, которые обеспечивают взаимодействие между нуклонами в ядре атома.

До середины

20

века было открыто большое количество элементарных частиц. Это стало возможно благодаря широкому исследованию космических лучей, внедрению ускорительной техники, развитию ядерной физики.

Виды частиц

В наше время известно порядка

400

элементарных или субъядерных частиц. Большинство из них нестабильно: одни частицы могут самопроизвольно превращаться в другие с течением времени. Исключением из этого являются нейтрино, фотон, протон и электрон.

Время жизни нестабильных частиц значительно разнится. Дольше всех «живет» нейтрон:

15

минут. Существование


μ

-мезона ограничено отрезком времени в 

2,2·106

 секунды, нейтрального 

π

-мезона – 

0,87·1016 с

. Среднее время существования гиперонов, массивных частиц, составляет всего

1010 с

.

Определение 1

Основые свойства элементарных частиц

Одним из наиболее важных свойств элементарных частиц является их способность к взаимным превращениям. Частицы способны поглощаться (возникать) и испускаться (исчезать). Это относится как к стабильным, так и к нестабильным частицам. Разница лишь в том, что стабильные частицы могут превращаться не самопроизвольно, а в результате взаимодействия с другими частицами.

Определение 2

Частицы и античастицы

Электрон является двойником позитрона. Антипротон отличается от протона наличием у него отрицательного электрического заряда. Нейтрон не имеет заряда. Антинейтрон отличается от нейтрона знаком магнитного момента и барионного заряда.


Наличие античастиц установлено для всех элементарных частиц. Встреча частицы и античастицы сопровождается аннигиляцией, в результате которой обе частицы превращаются в кванты излучения или частицы других видов.

Ученые предполагают существование антивещества. Теоретически, это возможно, если в ядре будут антинуклоны, а в оболочке атома позитроны. Взаимодействие вещества и антивещества может привести к выделению огромного количества энергии, которое будет превосходить энергию ядерных и термоядерных реакций.

Группы элементарных частиц

Информацию об основных элементарных частицах мы собрали в таблицу. Размещение частиц соответствует существующей ныне системе классификации элементарных частиц. Каждая из частиц имеет ряд характеристик: время жизни, масса, выраженная в электронных массах, электрический заряд в единицах элементарного заряда и спин, который также носит название момента импульса, выраженный в единицах постоянной Планка

ħ = h2π

.

Определение 3
Определение 4
Определение 5

Объединяет частицы из группы лептонов спин 


12

. В таблицу мы включили только основные лептоны. На самом деле их намного больше.

Определение 6

Определение 7

Подгруппа барионов по сравнению с мезонами является более обширной и состоит из более тяжелых элементарных частиц. Нуклоны являются самыми легкими из барионов, затем идут гипероны. Масса омега-минус-гиперона составляет

3273

электронных массы. Спин барионов составляет

12

.

Кварковая гипотеза

Количество уже открытых и вновь открываемых частиц позволяет предположить, что существуют какие-то более мелкие фундаментальные частицы. В середине

20

века американский физик Мюррей Гелл-Ман выдвинул гипотезу существования кварков, фундаментальных частиц, из которых построены тяжелые элементарные частицы.

Согласно теории Гелл-Мана существует три кварка и три антикварка. Они могут объединяться, образуя различные сочетания.

Определение 8

Эта теория позволила объяснить существование уже открытых частиц и существование других, еще неизвестных науке. При этом, ряд свойств предсказанных частиц оказался неожиданным для исследователей.


Электрический заряд кварков должен выражаться дробными числами, равными 

23

и 

13

элементарного заряда.

Поиски кварков в космических лучах и на современных ускорителях высоких энергий оказались безуспешными. Считается, что кварки обладают очень большой массой. В связи с этим, получить кварки при тех энергиях, которые можно получить в современных ускорителях, не получается. Тем не менее, установлено, что кварки существуют внутри тяжелых элементарных частиц, таких как андроны.

 Фундаментальные взаимодействия в природе

Определение 9
Определение 10

Сильное взаимодействие

Это вид фундаментального взаимодействия также носит название ядерного, так как оно обуславливает прочную связь между нуклонами в ядре атома. Из числа элементарных частиц в сильном взаимодействии принимают участие андроны (мезоны и барионы).

Сильное взаимодействие считается короткодействующим, так как проявляется на расстоянии порядка


1015 м

 и менее.

Электромагнитное взаимодействие

Благодаря этому виду взаимодействия возможно существование молекул и атомов. Оно определяет большинство свойств веществ, находящихся в трех агрегатных состояниях (твердом, жидком и газообразном). Оно обуславливает протекание процессов поглощения и излучения фотонов атомами и молекулами вещества, а также целый ряд других физических и химических процессов. Кулоновское отталкивание, существующее между протонами, объясняет неустойчивость ядер атомов с большими массовыми числами.

В электромагнитном взаимодействии могут участвовать любые частицы, которые обладают электрическим зарядом, а также кванты электромагнитного поля фотоны.

Слабое взаимодействие

Этот вид взаимодействия определяет ход наиболее медленных процессов, которые протекают в микромире, в том числе с участием нейтрино или антинейтрино.

В этом виде взаимодействия могут принимать участие любые элементарные частицы.

Пример 1

Гравитационное взаимодействие

В связи с тем, что масса элементарных частиц мала, силами гравитационного воздействия между ними можно пренебречь. Гравитация имеет значение при взаимодействии космических объектов, чья масса огромна.

Теория обменного взаимодействия

В первой трети прошлого столетия у исследователей появилась гипотеза о том, что все взаимодействия в мире элементарных частиц осуществляются посредством обмена квантами какого-либо поля. Выдвинули эту гипотезу советские ученые И.Е. Тамм и Д.Д. Иваненко. Они провели параллели между взаимодействиями, которые возникают в результате обмена частицами, и обменом валентными электронами, которые при образовании ковалентной химической связи объединяются на незаполненных электронных оболочках.

Определение 11
Определение 12

Подтверждением верности теории обменного взаимодействия стали теоретические выкладки японского физика Х. Юкавы, который доказал, что сильное взаимодействие между нуклонами можно объяснить обменом гипотетическими частицами, которые получили название мезонов. Юкава вычислил массу этих частиц. Она оказалась приблизительно равно

300

электронным массам.

Спустя несколько лет частицы с такой массой действительно были обнаружены. Они были названы π-мезонов (пионов). В настоящее время известны три вида пионов: 

π+, π

 и 

π0

.

Теория электрослабого взаимодействия рассматривает электромагнитное поле и поле слабого взаимодействия как две разные характеристики одного поля. В таком поле помимо квантов взаимодействие обеспечивают и векторные бозоны.

Теория Великого объединения

После того, как удалось объединить в одну модель слабое и электромагнитное взаимодействия, у исследователей появилась уверенность в том, что связаны между собой все виды взаимодействий. Единственное, чего не хватает для полноты картины, это физического подтверждения таких взаимодействий. До получения доказательств теория остается лишь привлекательной научной гипотезой.

Для того, чтобы объединить слабое, электромагнитное и гравитационное взаимодействия, физики-теоретики предположили существование гипотетической частицы под названием гравитон. Однако до настоящего времени существование такой частицы не было подтверждено в ходе экспериментов.

Предполагается, что получить подтверждение теории Великого объединения в современных ускорителях невозможно. А все потому, что единое поле, которое объединяет все виды взаимодействий, существует только при очень больших энергиях частиц. Такая энергия частицы могла наблюдаться только на самых ранних этапах существования вселенной, сразу после Большого взрыва.

Предполагается, что Большой взрыв произошел

18

миллиардов лет назад. В теории, сразу после Большого взрыва температура могла достигать

1032 К

, а энергия частиц 

E = kT

 достигать значений 

1019

 ГэВ. В таких условиях материя могла существовать в форме кварков и нейтрино, а все виды взаимодействий были объединены в одно силовое поле.

По мере расширения вселенной энергия частиц уменьшается. Из единого поля при энергиях частиц 

 1019 ГэВ

выделилось гравитационное взаимодействие. При энергиях порядка 

1014 ГэВ

разделились сильное и электрослабое взаимодействия. При энергиях порядка 

103 ГэВ

 все четыре вида фундаментальных взаимодействий оказались разделенными. Параллельно этому началось формирование более сложных форм материи: нуклонов, ядер атомов, атомов, ионов.

Основываясь на законах физики, описывающих взаимодействие элементарных частиц, создана модель эволюции вселенной, на которую опирается вся современная космология.

Источник: Zaochnik.com

Существует много типов элементарных частиц. Если говорить о фундаментальных -кварках и лептонах, -то их 6 и 6, то есть всего 12. Мы с вами сделаны из протонов и нейтронов, в которые входят только u- и d-кварки и электрон, образующий оболочки атомов. Кажется, что все остальные частицы не нужны, но они есть в природе. Их открывают на ускорителях. Мы видим их в космических лучах.

К составляющим материи относятся кварки и лептоны.Кварки участвуют в сильных взаимодействиях и образуют адроны. К адронам относятся протоны и нейтроны, из них строятся ядра атомов. Существует три поколения кварков, разные по массе. Самый легкий кварк первого поколения (u-кварк) стабилен, остальные быстро распадаются.

 

Лептоны участвуют в слабых взаимодействиях. Они, как и кварки, образуют три поколения. В каждом поколении присутствует один заряженный и один нейтральный лептон (нейтрино). Самые изученные лептоны -электроны -окружают ядра атомов, участвуют в химических реакциях и во многом определяют свойства вещества. Бозоны -переносчики взаимодействия.

Глюоны переносят сильное взаимодействие между кварками. Это взаимодействие настолько прочное, что в естественных условиях глюоны и кварки не находятся в свободном состоянии, а образуют связанные состояния -адроны.

W- и Z-бозоны переносят слабое взаимодействие. Оно ответственно за распад элементарных частиц и бета-распад атомных ядер. Например, нейтрон, испуская W-бозон, переходит в протон, а сам W-бозон распадается на пару лептонов.

Фотоны переносят электромагнитное взаимодействие. В этом взаимодействии участвуют все кварки и заряженные лептоны. Солнечный свет, люминесценция и лазерная указка существуют благодаря испусканию фотонов.

Гравитон -гипотетическая элементарная частица, квант гравитационного поля, ответственный за гравитационные взаимодействия, в которых участвуют и элементарные частицы, и целые планеты.

 

Бозон Хиггса играет двоякую роль: с одной стороны, он переносит взаимодействия между кварками и лептонами, а с другой -обеспечивает массу кварков, лептонов, W- и Z-бозонов. Чем сильнее частица взаимодействует с конденсатом поля Хиггса, тем больше масса.

Тяжелые кварки прилетают к нам в виде тяжелых барионов или мезонов. Эти частицы не существуют вечно. Период существования электрона неизвестен, поэтому он может жить вечно. Его родственник -мюон, второй лептон -тяжелее, поэтому существует доли секунды. Связанное состояние из кварков существует столь короткое время, что это невозможно выразить во временной шкале. Основная часть элементарных частиц, которые мы знаем в природе, практически не живет. После того как период существования частиц заканчивается, они распадаются, тяжелая частица превращается в легкие. Мюон распадается на электрон и два нейтрино.

 

Все процессы распада описываются слабым взаимодействием -это точечный процесс, когда частица моментально распадается на другие легкие. Сначала мюон превращается в промежуточное состояние, которое назвали промежуточным бозоном. Сейчас его называют W-бозоном или Z-бозоном -переносчики слабых взаимодействий. Процесс идет через промежуточную ступень. Сначала образуется промежуточный бозон, потом он, в свою очередь, тоже распадается. Процессы распада происходят по одной схеме: испускается W-бозон или Z-бозон, который распадается. Каждый процесс заканчивается тем, что тяжелая частица распадается на три частицы, которые легче ее. Мюон распадается на электрон и два нейтрино.

 

 

Процесс распада возможен тогда, когда он энергетически разрешен: масса тяжелой частицы больше, чем массы продуктов распада. Идентичный процесс происходит с кварками. Тяжелый кварк распадается на легкий кварк и нейтрино. Каждый процесс распада сопровождается рождением нейтрино -это легкая частица, которая участвует в единственном процессе слабого распада. У нее нет электрического заряда, поэтому ее невозможно наблюдать. Изначально нейтрино придумали, чтобы объяснить дисбаланс энергии в процессе бета-распада. Распад мюона на электрон называется бета-распадом.

Все тяжелые частицы распадаются. Знаменитый хиггсовский бозон, открытый последним из всего ряда частиц Стандартной модели, быстро распадается. Время жизни элементарных частиц в Стандартной модели даже не наносекунды, а гораздо меньше -примерно 10-12 секунд. Частицы живут очень мало, но мюон существует достаточное время, чтобы пролететь в космических лучах. Это объясняется тем, что в специальной теории относительности время быстро движущейся частицы течет медленнее, поэтому, несмотря на распад частицы, она успевает пролететь значительное расстояние. В космических лучах мы наблюдаем мюоны, которые прилетают к нам, пролетают большие расстояния благодаря скорости движения, равной почти скорости света. Распады характеризуются шириной -это величина, которую измеряют в энергетических единицах -мегаэлектронвольты или гигаэлектронвольты. Когда мы говорим о W-бозонах или о хиггсовском бозоне, мы используем ширину -экспериментально измеряемая величина, которая описывает вероятность распада частицы колоколообразной функцией со своей шириной или полушириной. Это обратная величина к времени жизни, поэтому в физике частиц говорят не о времени, а о ширине. Чем меньше ширина, тем больше время жизни -и наоборот.

 

Распады частиц подчиняются конкретным правилам. Если существуют новые частицы, их можно обнаружить по отклонениям распада и времени жизни или отклонениям ширины от известных предсказаний теории. Поиски новой физики в последние годы были основаны на измерении ширины распадов или вероятности распадов частиц, потому что распады могут быть разными.

 

Тяжелый барион распадается десятками различных способов, на разные продукты распада. Если масса частицы велика, то она может распадаться по разным каналам. Вероятность каждого канала рассчитывается теоретически, после чего пробуют измерить вероятность разных каналов распада и сравнить эксперимент с теорией. Поиски новой физики ведут на основе измерений с высокой точностью вероятности распадов и сравнивают с теоретическими расчетами.

 

Раньше ученые считали, что удастся найти новую физику таким способом. Например, поиски суперсимметрии основывались на точном измерении распадов B-мезонов. Выяснили, что в суперсимметричных сценариях распады имеют более высокую вероятность, чем в Стандартной модели. Если полную вероятность всех каналов распадов взять за 100%, то есть каналы, которые имеют вероятность доли процента, одну миллионную процента. Такие каналы чувствительны к физике, которая есть на малых расстояниях. Таким методом пытались обнаружить новую физику, но этого не случилось. Природа тонко подстроена, поэтому Стандартная модель, которую удалось построить, правильно ухватывает все свойства. До сих пор все редкие распады в точности укладываются в рамки Стандартной модели.

 

 

После открытия хиггсовского бозона сразу стали сопоставлять изначальные предсказания с новой частицей. Изучили ее распад. Моды распада хиггсовского бозона стали указанием на то, какую частицу открыли. Бозон Хиггса рождался на Большом адронном коллайдере, где рождается очень много частиц, поэтому во всем конгломерате частиц нужно было рассмотреть маленький пичок, который соответствовал рождению хиггсовского бозона и быстро распадается по разным каналам. Первые указания на существование бозона Хиггса нашли в распаде 2 гамма-кванта, поэтому это называют «распад Хиггс 2 гамма». Вероятность этого распада мала, но он оказался чист с точки зрения эксперимента, поэтому в этом канале распада обнаружили хиггсовский бозон. Затем искали другие каналы распада хиггсовского бозона в кварки, лептоны, W-бозоны, Z-бозоны. Эти распады идут с малой вероятностью, но все они подтвердились экспериментально. После этого стали говорить, что нашли частицу, которую искали, потому что все ее распады в точности укладываются в предсказания и созданную для нее схему.

 

Распады частиц являются универсальной вещью для тяжелых частиц, и по особенностям этих распадов и относительным вероятностям каналов мы восстанавливаем свойства моделей и проверяем точность описаний. На распаде бозона Хиггса видно, как моды распадов в совокупности позволяют зафиксировать частицу, которую открыли. Фиксируется реальное существование бозона Хиггса, который осуществляет спонтанное нарушение симметрии, придает массу всем фундаментальным частицам и взаимодействует согласно предсказуемой теории. Идея о том, что частицы живут фиксированное время, относится ко всем тяжелым частицам, потому что тяжелая частица распадается в легкую, а самой легкой частице уже распадаться некуда. Поэтому считается, что электрон не распадается. Ему некуда распадаться. U-кварки тоже никуда не распадаются, потому что это самый легкий кварк. ъ

 

Следующим этапом стало изучение распада связанных состояний. Например, протон, который состоит из двух u-кварков и d-кварка. Согласно современным экспериментальным данным, протон не распадается. Распад протона специально искали в подземных установках и получили экспериментальное ограничение на время жизни протона -1035 лет. Это превышает время жизни Вселенной. Электрон считается стабильной частицей, но таких частиц мало.

 

 

Когда ищут темную материю, которая, согласно гипотезам, существует во Вселенной, ученые думают, что это абсолютно стабильная частица, она не распадается. Для этого условия темная материя должна быть достаточно легкой, чтобы ей не во что было распасться, должна быть легче электрона. На самом деле это не так, она может быть тяжелой, но ее квантовые числа и пути распада не позволяют ей распадаться дальше. Другие частицы распадаются, и этот процесс обрывается на самой легкой частице с данными квантовыми числами. Считается, что электрон абсолютно стабилен, u-кварк тоже, и, возможно, темная материя абсолютно стабильна, но это предстоит выяснить, поскольку пока неизвестно, какая частица представляет собой темную материю. Кусочек темной материи мы знаем -это нейтрино, тоже стабильная частица.

 

Источник

Источник: naukatehnika.com

Элементарные частицы материи

Эле­мен­тар­ные ча­сти­цы ма­те­рии раз­де­ля­ют­ся на квар­ки и леп­то­ны. Квар­ки уча­ст­ву­ют в силь­ных, сла­бых и элек­тро­маг­нит­ных взаи­мо­дей­ст­ви­ях. В силь­ных взаи­мо­дей­ст­ви­ях квар­ки вы­сту­па­ют в ви­де три­пле­тов; со­от­вет­ст­вую­щее кван­то­вое чис­ло, на­зы­вае­мое цве­том, при­ни­ма­ет 3 зна­че­ния. В сла­бых взаи­мо­дей­ст­ви­ях квар­ки вы­сту­па­ют в ви­де дуб­ле­тов; со­от­вет­ст­вую­щее кван­то­вое чис­ло, на­зы­вае­мое сла­бым изо­спи­ном, при­ни­ма­ет 2 зна­че­ния. Элек­трич. за­ряд квар­ков дроб­ный: для u-квар­ка из изо­спи­но­во­го дуб­ле­та он ра­вен +2/3, для b-квар­ка –1/3 в еди­ни­цах за­ря­да элек­тро­на. Квар­ки име­ют спин 1/2 и, сле­до­ва­тель­но, яв­ля­ют­ся фер­мио­на­ми.

Леп­то­ны уча­ст­ву­ют в сла­бых и элек­тро­маг­нит­ных взаи­мо­дей­ст­ви­ях. В сла­бых взаи­мо­дей­ст­ви­ях леп­то­ны, как и квар­ки, вы­сту­па­ют в ви­де дуб­ле­тов. Элек­трич. за­ряд леп­то­нов це­лый, рав­ный –1 у элек­тро­на и 0 у ней­три­но. Леп­то­ны так­же яв­ля­ют­ся фер­мио­на­ми и име­ют спин 1/2.

По­ка не до кон­ца яс­на при­ро­да лег­чай­ше­го леп­то­на – ней­три­но. Для ней­три­но, элек­три­че­ски ней­траль­ной час­ти­цы, воз­мож­на си­туа­ция, ко­гда оно яв­ля­ет­ся ан­ти­час­ти­цей са­мо­му се­бе. В этом слу­чае его на­зы­ва­ют май­о­ра­нов­ским ней­три­но. Но ес­ли это раз­ные час­ти­цы, то то­гда ней­три­но яв­ля­ет­ся ди­ра­ков­ской час­ти­цей. Не­из­вест­но и аб­со­лют­ное зна­че­ние мас­сы ней­три­но, из­вест­ны толь­ко раз­но­сти масс ме­ж­ду разл. сор­та­ми ней­три­но, ко­то­рые чрез­вы­чай­но ма­лы.

Су­ще­ст­ву­ют 3 по­ко­ле­ния квар­ков и леп­то­нов (рис.). Час­ти­цы раз­ных по­ко­ле­ний име­ют оди­на­ко­вые кван­то­вые чис­ла и раз­ли­ча­ют­ся толь­ко мас­са­ми, каж­дое сле­дую­щее по­ко­ле­ние тя­же­лее пре­ды­ду­ще­го. Спектр масс квар­ков и леп­то­нов в стан­дарт­ной мо­де­ли про­из­воль­ный и про­сти­ра­ет­ся от до­лей эВ для ней­три­но и не­сколь­ких МэВ для лёг­ких квар­ков до не­сколь­ких ГэВ для тя­жё­лых квар­ков и леп­то­нов и сот­ни ГэВ для са­мой тя­жё­лой час­ти­цы – t-квар­ка. Спектр масс не пред­ска­зы­ва­ет­ся стан­дарт­ной мо­де­лью и оп­ре­де­ля­ет­ся из экс­пе­рим. дан­ных. Мас­сы всех квар­ков и леп­то­нов воз­ни­ка­ют в ре­зуль­та­те их взаи­мо­дей­ст­вия с по­лем Хигг­са.

Квар­ки не на­блю­да­ют­ся в сво­бод­ном со­стоя­нии. Их мож­но на­блю­дать толь­ко в свя­зан­ных со­стоя­ни­ях, на­зы­вае­мых ад­ро­на­ми, ко­то­рые име­ют це­ло­чис­лен­ный элек­трич. за­ряд и ней­траль­ны по от­но­ше­нию к кван­то­во­му чис­лу «цвет». Леп­то­ны, на­обо­рот, на­блю­да­ют­ся в сво­бод­ном со­стоя­нии и так­же «бес­цвет­ны». В стан­дарт­ной мо­де­ли счи­та­ет­ся, что квар­ки не мо­гут пе­ре­хо­дить в леп­то­ны и на­обо­рот, т. к. эти про­цес­сы при­ве­ли бы к не­со­хра­не­нию ба­ри­он­но­го и леп­тон­но­го за­ря­дов. Эти за­ко­ны со­хра­не­ния не сле­ду­ют из об­щих прин­ци­пов сим­мет­рии, но на­дёж­но ус­та­нов­ле­ны экс­пе­ри­мен­таль­но. Все квар­ки име­ют ба­ри­он­ный за­ряд, рав­ный 1/3, и леп­тон­ный за­ряд, рав­ный ну­лю, а леп­то­ны име­ют леп­тон­ный за­ряд, рав­ный 1, и ну­ле­вой ба­ри­он­ный за­ряд.

Элементарные частицы – переносчики взаимодействий

Со­глас­но кван­то­вой тео­рии, все взаи­мо­дей­ст­вия Э. ч. осу­ще­ст­в­ля­ют­ся за счёт об­ме­на кван­та­ми со­от­вет­ст­вую­щих по­лей. Пе­ре­нос­чик силь­но­го взаи­мо­дей­ст­вия – глю­он; он яв­ля­ет­ся ок­те­том по от­но­ше­нию к цве­ту и не име­ет ни изо­спи­на, ни элек­трич. за­ря­да. Как и кварк, глю­он не на­блю­да­ет­ся в сво­бод­ном со­стоя­нии, а за­перт внут­ри ад­ро­нов. Пе­ре­нос­чи­ки сла­бых взаи­мо­дей­ст­вий – про­ме­жу­точ­ные век­тор­ные W- и Z-бо­зо­ны. Они «бес­цвет­ны», яв­ля­ют­ся три­пле­та­ми по от­но­ше­нию к сла­бо­му изо­спи­ну, W-бо­зон име­ет элек­трич. за­ряд ±1, Z-бо­зон ней­тра­лен. Пе­ре­нос­чик элек­тро­маг­нит­но­го взаи­мо­дей­ст­вия – фо­тон; он «бес­цве­тен», не име­ет изо­спи­на и то­же ней­тра­лен. Пе­ре­нос­чи­ки всех этих взаи­мо­дей­ст­вий яв­ля­ют­ся бо­зо­на­ми и име­ют спин, рав­ный 1. Они не не­сут ни ба­ри­он­но­го, ни леп­тон­но­го за­ря­да.

По­след­ней час­ти­цей в этом ря­ду сто­ит бо­зон Хигг­са. Он иг­ра­ет двоя­кую роль в стан­дарт­ной мо­де­ли: за счёт взаи­мо­дей­ст­вия с клас­сич. со­став­ляю­щей хигг­сов­ско­го по­ля все час­ти­цы стан­дарт­ной мо­де­ли при­об­ре­та­ют мас­су, а сам хигг­сов­ский бо­зон яв­ля­ет­ся пе­ре­нос­чи­ком ещё од­но­го взаи­мо­дей­ст­вия ме­ж­ду квар­ка­ми и леп­то­на­ми, ин­тен­сив­ность ко­то­ро­го про­пор­цио­наль­на мас­сам час­тиц. Он уча­ст­ву­ет так­же в сла­бых взаи­мо­дей­ст­ви­ях и яв­ля­ет­ся дуб­ле­том по от­но­ше­нию к сла­бо­му изо­спи­ну. Элек­трич. за­ряд бо­зо­на Хигг­са ра­вен ну­лю, спин так­же ну­ле­вой.

Некоторые проблемы теории элементарных частиц

Со­глас­но экс­пе­рим. дан­ным по рас­падам Э. ч., а так­же с учё­том дан­ных по тем­пе­ра­тур­ным флук­туа­ци­ям мик­ро­вол­но­во­го фо­но­во­го из­лу­че­ния, чис­ло по­ко­ле­ний Э. ч. рав­но трём. Тео­ре­тич. объ­яс­не­ния это­го фак­та по­ка нет. Это оз­на­ча­ет, что по­сколь­ку все пе­ре­чис­лен­ные вы­ше час­ти­цы от­кры­ты экс­пе­ри­мен­таль­но, то дру­гих, но­вых Э. ч. не су­ще­ст­ву­ет. Од­на­ко воз­мож­но су­ще­ст­во­ва­ние иных Э. ч., ко­то­рые не опи­сы­ва­ют­ся стан­дарт­ной мо­де­лью и по­ка не об­на­ру­же­ны, т. к. они ли­бо слиш­ком тя­же­лы и не мо­гут ро­дить­ся на ус­ко­ри­те­лях час­тиц, ли­бо слиш­ком сла­бо взаи­мо­дей­ст­ву­ют с из­вест­ны­ми час­ти­ца­ми и по­это­му по­ка не об­на­ру­же­ны. При­ме­ром слу­жат ги­по­те­тич. час­ти­цы, со­став­ляю­щие тём­ную ма­те­рию, ко­то­рая про­яв­ля­ет­ся за счёт свое­го гра­ви­тац. по­ля, но не за­ре­ги­ст­ри­ро­ва­на по­ка как ин­ди­ви­ду­аль­ная час­ти­ца.

К Э. ч. мо­жет быть от­не­сён так­же гра­ви­тон – квант гра­ви­тац. по­ля, но за­ре­ги­ст­ри­ро­вать его ещё труд­нее, по­сколь­ку в си­лу ис­клю­чи­тель­ной сла­бо­сти гра­ви­та­ци­он­но­го взаи­мо­дей­ст­вия тре­бу­ет­ся сре­до­то­чие ог­ром­ных масс для по­лу­че­ния силь­ной гра­ви­та­ции, что воз­мож­но лишь в ок­ре­ст­но­сти чёр­ных дыр.

Кро­ме час­тиц, в при­ро­де су­ще­ст­ву­ют ан­ти­час­ти­цы, со­став­ляю­щие ан­ти­ма­терию. Ка­ж­дая час­ти­ца име­ет сво­его парт­нё­ра, ан­ти­час­ти­цу, ко­то­рая име­ет те же са­мые свой­ст­ва и ту же мас­су, что и обыч­ная час­ти­ца, но про­ти­во­по­лож­ные зна­ки всех за­ря­дов. Су­ще­ст­во­ва­ние ан­ти­час­тиц сле­ду­ет из урав­не­ний ре­ля­ти­ви­ст­ской кван­то­вой тео­рии по­ля, ко­то­рая опи­сы­ва­ет все Э. ч. Не­на­блю­дае­мость ан­ти­час­тиц в ок­ру­жаю­щем нас ми­ре, при том что они все­гда ро­ж­да­ют­ся на ус­ко­ри­те­лях в па­ре с обыч­ны­ми час­ти­ца­ми, объ­яс­ня­ет­ся тем, что на ран­них ста­ди­ях эво­лю­ции Все­лен­ной был на­рушен ба­ланс ме­ж­ду час­ти­ца­ми и ан­ти­час­ти­ца­ми. В ре­зуль­та­те час­тиц об­ра­зо­ва­лось боль­ше, чем ан­ти­час­тиц, про­изош­ла их вза­им­ная ан­ни­ги­ля­ция, и те час­ти­цы, ко­то­рые ос­та­лись, об­ра­зу­ют совр. Все­лен­ную.

По­сколь­ку ни квар­ки, ни глюо­ны не на­блю­да­ют­ся в сво­бод­ном со­стоя­нии, об их су­ще­ст­во­ва­нии из­вест­но кос­вен­но, из экс­пе­ри­мен­тов по рас­сея­нию про­то­нов и элек­тро­нов. Эти экс­пе­ри­мен­ты по­хо­жи на опы­ты Ре­зер­фор­да, в ко­то­рых бы­ло от­кры­то атом­ное яд­ро, и де­мон­ст­ри­ру­ют, что внут­ри про­то­нов и др. ад­ро­нов на­хо­дят­ся то­чеч­ные со­став­ляю­щие, на ко­то­рых и про­ис­хо­дит рас­сея­ние. Та­ким об­ра­зом ус­та­нов­ле­но, что ад­ро­ны – со­став­ные час­ти­цы, об­ра­зо­ван­ные из квар­ков, а глюо­ны – «клей», ко­то­рый за счёт силь­но­го взаи­мо­дей­ст­вия не по­зво­ля­ет квар­кам раз­ле­теть­ся и де­ла­ет ад­ро­ны ста­биль­ны­ми.

Кварковая модель адронов

Пер­во­на­чаль­но квар­ки бы­ли пред­ло­же­ны для клас­си­фи­ка­ции ад­ро­нов, но по­сле опы­тов по рас­сея­нию при­об­ре­ли ста­тус ре­аль­ных час­тиц. Ад­ро­ны, со­став­лен­ные из квар­ков, де­лят­ся на два боль­ших клас­са: ба­рио­ны (час­ти­цы с по­лу­це­лым спи­ном) и ме­зо­ны (час­ти­цы с це­лым спи­ном).

Ба­рио­ны со­сто­ят из трёх квар­ков. Так, напр., про­тон со­сто­ит их двух u-квар­ков и од­но­го d-квар­ка, при­чём цве­та квар­ков со­став­ле­ны так, что про­тон «бес­цве­тен», а спи­ны раз­но­на­прав­ле­ны, так что сум­мар­ный спин ока­зы­ва­ет­ся рав­ным 1/2. Элек­трич. за­ряд про­то­на ра­вен сум­ме за­ря­дов квар­ков и ра­вен +1. Ней­трон по­стро­ен ана­ло­гич­ным об­ра­зом и со­сто­ит из двух d-квар­ков и од­но­го u-квар­ка. Су­ще­ст­ву­ют и ба­рио­ны со спи­ном 3/2. Все ба­рио­ны име­ют ба­ри­он­ный за­ряд, рав­ный 1. Из­на­чаль­но квар­ко­вая мо­дель ос­но­вы­ва­лась на трёх квар­ках (u, d и s) и все ба­рио­ны пред­став­ля­ли со­бой разл. ком­би­на­ции, со­став­лен­ные из этих квар­ков.

Ме­зо­ны со­сто­ят из квар­ка и ан­тик­вар­ка и име­ют ба­ри­он­ный за­ряд, рав­ный ну­лю. Так, напр., лег­чай­шие силь­но­взаи­мо­дей­ст­вую­щие час­ти­цы – π-ме­зо­ны – име­ют сле­дую­щий квар­ко­вый со­став: $π^{+}=uoverline d$, $π^{-}=overline ud$, $π^0=uoverline u+doverline d$. Чер­та над сим­во­лом квар­ка обо­зна­ча­ет ан­ти­кварк. Спи­ны квар­ков раз­но­на­прав­ле­ны, и пол­ный спин π-ме­зо­на ра­вен ну­лю. Су­ще­ст­ву­ют ме­зо­ны и со спи­ном 1, ко­гда спи­ны со­став­ляю­щих их квар­ков од­но­на­прав­ле­ны.

Для сис­те­ма­ти­за­ции ад­рон­ных со­стоя­ний ис­поль­зо­ва­ли груп­пу уни­тар­ной сим­мет­рии SU(3), где чис­ло 3 со­от­вет­ст­вова­ло чис­лу квар­ков. Все имею­щие­ся ба­рио­ны, со­став­лен­ные из трёх квар­ков, и ме­зо­ны, со­став­лен­ные из квар­ка и ан­тик­вар­ка, пре­крас­но ук­ла­ды­ва­ют­ся в пред­став­ле­ния этой груп­пы, та­кие как ок­тет, но­нет или де­ку­плет. Ес­ли бы час­ти­цы из муль­ти­пле­тов име­ли оди­на­ко­вые мас­сы, то сим­мет­рия бы­ла бы точ­ной. Из-за раз­ли­чия масс квар­ков она на­ру­ша­ет­ся, од­на­ко это не при­во­дит к раз­ру­ше­нию муль­ти­пле­тов, ко­то­рые со­дер­жат все воз­мож­ные час­ти­цы и пра­виль­но пе­ре­да­ют их кван­то­вые чис­ла. Та­кая клас­си­фи­ка­ция час­тиц на ос­но­ве квар­ко­вой мо­де­ли по­лу­чи­ла назв. вось­ме­рич­но­го пу­ти в со­от­вет­ст­вии с про­стей­шим муль­ти­пле­том. Ны­не, ко­гда из­вест­ны 6 квар­ков, груп­па сим­мет­рии долж­на быть рас­ши­ре­на до груп­пы SU(6) и все имею­щие­ся ад­ро­ны долж­ны при­над­ле­жать к пред­став­ле­ни­ям этой груп­пы.

Все пред­став­лен­ные вы­ше ад­ро­ны яв­ля­ют­ся «бес­цвет­ны­ми» ком­би­на­ция­ми цвет­ных квар­ков, но они не един­ст­вен­но воз­мож­ны. До­пус­ти­мы так­же ад­ро­ны, со­став­лен­ные из че­ты­рёх, пя­ти и шес­ти квар­ков и ан­тик­вар­ков. Они по­лу­чи­ли на­зва­ние эк­зо­тич. ад­ро­нов. Их так­же на­зы­ва­ют тет­ра-, пен­та- и сек­ста­к­вар­ка­ми в за­ви­си­мо­сти от чис­ла со­став­ляю­щих их квар­ков. По­лу­че­но экс­пе­рим. под­твер­жде­ние их су­ще­ст­во­ва­ния. Воз­мож­но так­же су­ще­ст­во­ва­ние ад­ро­на, об­ра­зо­ван­но­го ис­клю­чи­тель­но из глюо­нов. Он по­лу­чил на­зва­ние глю­бо­ла, но по­ка ещё дос­то­вер­но не иден­ти­фи­ци­ро­ван.

Боль­шин­ст­во Э. ч. не­ста­биль­ны и рас­па­да­ют­ся на бо­лее лёг­кие, ес­ли это не за­пре­ще­но за­ко­на­ми со­хра­не­ния энер­гии, элек­трич., цвет­но­го, ба­ри­он­но­го и леп­тон­но­го за­ря­дов. Ста­биль­ны фо­тон, элек­трон­ное и мю­он­ное ней­три­но, элек­трон, про­тон и их ан­ти­час­ти­цы. Ос­таль­ные Э. ч. са­мо­про­из­воль­но рас­па­да­ют­ся за вре­мя от ок. 103 с (для сво­бод­но­го ней­тро­на) до 10–17–10–24 (для ад­ро­нов). В обоб­ще­ни­ях стан­дарт­ной мо­де­ли при энер­ги­ях, за­ве­до­мо не­дос­туп­ных ус­ко­ри­те­лям, воз­мо­жен и рас­пад про­то­на, од­на­ко его вре­мя жиз­ни боль­ше 1034 лет, что на­мно­го пре­вы­ша­ет вре­мя жиз­ни Все­лен­ной. Экс­пе­рим. под­твер­жде­ния рас­па­да про­то­на по­ка не по­лу­че­но.

Источник: bigenc.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.