Своей собственной античастицей является


Иначе она называется майорановским фермионом. С помощью этого открытия намного приблизится создание кубитов, необходимых для применения в квантовых компьютерах.

Своей собственной античастицей является

 Американские и германские учёные, работающие в Университете Иллинойса и в Гамбургском университете. впервые получили изображение частицы, являющейся собственной античастицей. До них это не удавалось сделать никому.

Майорановские фермионы – это любые частицы, способные к одновременному проявлению свойств своих же античастиц. То есть, располагают противоположным по знаку электрическим зарядом, цветом и некоторыми квантовыми числами.

В более широком смысле, к майорановским фермионам можно отнести и некоторые квазичастицы. Это комплексы, которые образуются, в частности, в сверхпроводниках, когда происходит передача электрического заряда. Тогда получаются комплексы, в которые может входить по несколько частиц.


Именно их и запечатлела американо-немецкая команда физиков. В качестве основы они воспользовались рениевым сверхпроводником. Этот материал способен начать проводить электричество без потерь, когда температура составляет, приблизительно, минус 267 градусов по Цельсию.

Учёные нанесли на поверхность сверхпроводника своеобразный топологический узел из «островков» железа.

Когда через него пропустили электроток, на границах этих островков появились майорановские фермионы. Учёные смогли произвести наблюдение этих квазичастиц. Для этого они воспользовались сканирующим туннельным микроскопом.

С помощью этого прибора возможно получение изображения с высоким разрешение. В нём используется игла, кончик которой имеет толщину в несколько атомов для измерения расстояния, отделяющего её от атомов материала.

С помощью такого метода учёные и смогли «рассмотреть» квазичастицы, ранее бывшие неуловимыми. Более того, со слов специалистов, им удалось проведение исследования некоторых их физических характеристик.

С помощью него, создание эффективных кубитов для квантового компьютера стало намного ближе.

Майорановские фермионы обладают очень привлекательным для такой цели параметром. Это их стабильность.

Эти квазичастицы, в отличие от систем, которые ныне используются как кубиты, могут находиться в одном состоянии продолжительное время и, помимо того, они способны к «запоминанию» своего исходного положения.


Следующий шаг, как полагают учёные, будет заключаться в выяснении того, как можно спроектировать на чипах эти майорановские кубиты и осуществлять манипулирование ими для увеличения мощности в квантовых вычислительных системах.

Источник: hotgeo.ru

Майорановскими фермионами могут считаться любые частицы, которые одновременно проявляют свойства своих же античастиц, то есть имеют противоположные по знаку электрический и цветовой заряды и некоторые квантовые числа. В более общем смысле майорановскими фермионами также можно считать некоторые квазичастицы — своеобразные комплексы из нескольких частиц, образующиеся, например, в сверхпроводниках при передаче электрического заряда.

 

Именно такие структуры удалось запечатлеть команде физиков из Университета Иллинойса в Чикаго и Гамбургского университета (Германия). Они взяли за основу рениевый сверхпроводник — материал, который начинает проводить электричество без потерь при температуре около минус 267 °C. Ученые нанесли на его поверхность «островки» из железа, создав таким образом сверхпроводник с топологическим узлом.

 

При пропускании электрического тока через такой материал на границах железных островков появляются майорановские фермионы. Ученым удалось наблюдать эти квазичастицы, используя сканирующий туннельный микроскоп. Этот прибор позволяет получить изображение поверхности образца в высоком разрешении, так как использует иглу с кончиком толщиной в несколько атомов, чтобы измерить расстояние от нее до атомов материала.

 


Своей собственной античастицей является

 

Этот метод позволил исследователям «разглядеть» неуловимые квазичастицы и исследовать некоторых их физические характеристики. Исследование, по словам его авторов, поможет вплотную приблизиться к созданию эффективных кубитов для квантового компьютера. Одним из самых привлекательных для такой цели параметров майорановских фермионов ученые считают их стабильность. В отличие от большинства систем, используемых сегодня в качестве кубитов, эти квазичастицы могут находиться долгое время в одном состоянии, а также «запоминать» свое исходное положение.

 

Следующим шагом, по словам ученых, станет выяснить, как можно спроектировать эти майорановские кубиты на чипах и манипулировать ими, чтобы экспоненциально увеличить мощность квантовых вычислительных систем. А созданные недавно квантовые вентили позволят повысить скорость этих процессов в 200 раз.

Источник: naked-science.ru

Своей собственной античастицей является

Уже много лет международная группа исследователей засела глубоко под горой в центральной Италии, неустанно собирая очень точные измерения с самого холодного кубического метра вещества в известной Вселенной.


еные ищут доказательства того, что существует вид нейтрино, призрачных частиц, очень слабо реагирующих с веществом, которые неотличимы от своих собственных антиматериальных аналогов. И если они смогут их найти, то эти частицы могут разрешить космическую загадку, которая мучила физиков на протяжении десятилетий: почему вообще существует материя?

Мы давно знаем, что у материи есть «злой двойник», так называемая антиматерия. Для каждой фундаментальной частицы во Вселенной существует античастица, которая почти идентична своей сестре и имеет ту же массу, но противоположный заряд. Когда частица и античастица встречаются лицом к лицу, они аннигилируют друг с другом, создавая чистую энергию. 

«У нас есть эта очевидная полная симметрия между материей и антиматерией», — сказал Томас О’Доннелл, профессор физики в Технологическом Университете Вирджинии. «Каждый раз, когда вы создаете кусок материи, вы также создаете уравновешивающий его кусок антиматерии, и каждый раз, когда вы уничтожаете кусок материи, вы должны уничтожить кусок антиматерии. Если это так, то у вас никогда не может быть одного больше, чем другого».

Своей собственной античастицей является
Трек первого обнаруженного позитрона — антиэлектрона.


Эта симметрия противоречит нашему нынешнему пониманию того, как возникла Вселенная. Согласно теории Большого взрыва, когда Вселенная расширилась из бесконечно малой сингулярности (точки) около 13.8 миллиардов лет назад, считается, что в ней появилось равное количество материи и антиматерии. Однако, когда астрономы сейчас изучают космос, они видят, что Вселенная почти полностью состоит из материи, без признаков того, что половина вещества — это антиматерия. Что еще более тревожно, если теория Большого взрыва верна, то мы — люди, Земля, Солнечная система — вообще не должны существовать.

«Если бы материя и антиматерия полностью подчинялись этой симметрии, то по мере развития Вселенной вся материя и антиматерия аннигилировали бы в фотоны, и не осталось бы материи для звезд, планет и нас с вами. Мы бы не существовали!» — сказал О’Доннелл. «Поэтому возникает большой вопрос: нарушилось ли это равновесие в ходе эволюции Вселенной?»

Именно на этот вопрос надеются ответить О’Доннелл и его коллеги. За последние два года их команда собрала и проанализировала данные эксперимента, проводимого на CUORE (Cryogenic Underground Observatory for Rare Events, Криогенная подземная обсерватория для редких событий) в Национальной лаборатории Гран-Сассо в Италии, ища огонь, без которого, как известно, дыма не бывает, который положил бы конец этой космической тайне.

Своей собственной античастицей является
CUORE перед запуском.


CUORE, что в переводе с итальянского означает «сердце», ищет доказательства того, что некоторые неуловимые субатомные частицы, называемые нейтрино, являются их собственными античастицами — физики называют их майорановскими фермионами. Нейтрино, которые проходят как призраки через большую часть материи, чрезвычайно трудно обнаружить. На самом деле триллионы нейтрино, рожденные в огненной ядерной печи нашего Солнца, проходят через наши тела каждую секунду, и мы это никак не ощущаем.

Эксперимент CUORE ищет сигнатуру майорановских нейтрино, уничтожающих друг друга в процессе, называемом безнейтринным двойным бета-распадом. При обычном двойном бета-распаде два нейтрона внутри ядра атома одновременно превращаются в два протона, испуская пару электронов и антинейтрино. Это ядерное событие, хотя и чрезвычайно редкое и происходящее только раз в 100 квинтиллионов (10^20) лет для отдельного атома, наблюдалось в реальной жизни на большом количестве атомов.

Однако, если исследователи правы, и некоторые нейтрино являются настоящими майорановскими фермионами, то два антинейтрино, созданные во время распада, могут уничтожить друг друга и провести так называемый безнейтринный двойной бета-распад. Результат? Простые электроны, которые являются «обычным веществом». Если этот процесс на самом деле существует, он может быть ответственен за заселение ранней Вселенной обычной материей. Правда вот пронаблюдать его очень и очень сложно. По оценкам ученых, безнейтринный двойной бета-распад (если он вообще существует) для отдельного атома происходит только один раз за 10 септиллионов (10^25) лет.


«Безнейтринный распад — это то, что мы действительно хотим видеть, он нарушит правила, создавая материю без антиматерии», — сказал О’Доннелл, член коллаборации CUORE. «Это может стать первым ключом к реальному решению наблюдаемой разницы между веществом и антивеществом».

Детектор CUORE ищет энергетическую сигнатуру в виде тепла от электронов, созданных во время радиоактивного распада атомов теллура. Безнейтринный двойной бета-распад оставил бы уникальный и различимый пик в энергетическом спектре электронов. «CUORE, по сути, является одним из самых чувствительных термометров в мире», — говорится в заявлении технического координатора коллаборации CUORE Карло Буччи.
Своей собственной античастицей является
Обычный бета-распад, двойной бета-распад и безнейтринный двойной бета-распад.

Детектор CUORE собирался больше десятилетия, и на данный момент он является самым холодным кубическим метром вещества в известной Вселенной. Он состоит из 988 кубовидных кристаллов, изготовленных из диоксида теллура, охлажденных до 10 милликельвинов или минус 273 градуса по Цельсию, что совсем малость выше самой низкой температуры, которую позволяет физика. 


Чтобы оградить эксперимент от помех со стороны внешних частиц, таких как космические лучи, детектор заключен в толстый слой из высокочистого свинца, полученного из слитков, которые вез 2000-летний римский корабль, потерпевший крушение. Очень старый свинец является чистым, плотным и намного менее радиоактивным, чем недавно добытый металл, поэтому он идеально подходит для защиты чувствительных экспериментов от помех извне.

Несмотря на технологические достижения команды, обнаружение безнейтринного распада оказалось непростой задачей. Непрерывно собирая данные с 2017 года, они получили самый большой массив информации, когда-либо собранный детектором частиц такого рода. Их последние результаты, опубликованные предварительно на arXiv, показывают, что они не обнаружили никаких доказательств существования безнейтринного двойного бета-распада.

Коллаборация CUORE по-прежнему полна решимости выследить эту неуловимую частицу-двойного агента. Их результаты наложили более жесткую оценку на ожидаемую массу майорановского нейтрино, которое, по крайней мере, в 5 миллионов раз легче электрона. Команда планирует обновить CUORE после пяти лет непрерывной работы, введя новый тип кристаллов, которые, как они надеются, значительно улучшат его чувствительность.

«Если история хорошо предсказывает будущее, то мы можем быть совершенно уверены, что развитие детекторных технологий позволит нам изучать нейтрино все глубже и глубже», — сказал О’Доннелл. «Надеюсь, мы обнаружим безнейтринный двойной бета-распад, или, возможно, что-то более экзотическое и неожиданное».


Источник: www.iguides.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.