Карл гаусс краткая биография


Иоганн Карл Фридрих Гаусс (1777-1855) – немецкий математик, механик, физик, астроном и геодезист. Один из величайших математиков в истории человечества, которого называют «королем математиков».

Лауреат медали Копли, иностранный член Шведской и Петербургской академий наук, английского Королевского общества.

karl-gauss

В биографии Гаусса есть множество интересных фактов, о которых мы расскажем в данной статье.

Итак, перед вами биография Карла Гаусса.

Биография Гаусса

Карл Гаусс появился на свет 30 апреля 1777 г. в немецком городе Геттинген. Он рос и воспитывался в простой малограмотной семье.

Отец математика, Гебхард Дитрих Гаусс, работал садовником и каменщиком, а мать, Доротея Бенц, была дочерью строителя.

Детство и юность

Незаурядные способности Карла Гаусса начали появляться еще в раннем возрасте. Когда ребенку едва исполнилось 3 года, он уже овладел чтением и письмом.

Интересен факт, что в 3-летнем возрасте Карл исправлял ошибки отца, когда тот вычитал или складывал числа.

Мальчик с поразительной легкостью выполнял разные вычисления в уме, не прибегая к счетам и другим приспособлениям.


karl-gauss-1

Со временем учителем Гаусса стал Мартин Бартельс, который позже будет обучать и Николая Лобачевского. Он сразу же разглядел в ребенке невиданный талант и смог выхлопотать ему стипендию.

Благодаря этому, Карлу удалось окончить колледж, в котором он учился в период 1792-1795 гг.

В то время биографии юноша интересовался не только математикой, но и литературой, читая английские и французские произведения в подлиннике. Кроме этого, он прекрасно знал латинский язык, на котором написал множество своих работ.

В студенческие годы Карл Гаусс глубоко исследовал труды Ньютона, Эйлера и Лагранжа. Уже тогда он смог доказать закон взаимности квадратичных вычетов, чего не удалось сделать даже Эйлеру.

Также парень проводил изучения в области «нормального распределения ошибок».

Научная деятельность

В 1795 Карл поступил в Геттингенский университет, где проучился 3 года. За это время он сделал множество разных открытий.

Гаусс смог построить 17-угольник посредством циркуля и линейки, и решить проблему построения правильных многоугольников. Одновременно с этим он увлекался эллиптическими функциями, неевклидовой геометрией и кватернионами, открытыми им за 30 лет до Гамильтона.


Во время написания своих работ, Карл Гаусс всегда подробно излагал свои мысли, избегая абстрактных формулировок и какой-либо недосказанности.

В 1801 г. математик опубликовал свой знаменитый труд «Арифметические исследования». В нем затрагивались самые разные области математики, включая теорию чисел.

В то время Гаусс стал приват-доцентом Брауншвейгского университета, а позже был избран членом-корреспондентом в Петербургскую Академию наук.

В 24-летнем возрасте Карл проявил интерес к астрономии. Он изучал небесную механику, орбиты малых планет и их возмущения. Ему удалось найти способ определения элементов орбиты по 3-м полным наблюдениям.

pamyatnik-gaussu

Вскоре о Гауссе начали говорить во всей Европе. Многие государства приглашали его на работу, включая Россию.

Карл получил должность профессора в Геттингене, а также был назначен руководителем Геттингенской обсерватории.

В 1809 г. мужчина закончил новый труд, под названием «Теория движения небесных тел». В нем он подробно описал каноническую теорию учета возмущений орбит.

В следующем году Гаусс удостоился премии Парижской академии наук и золотой медали Лондонского королевского общества. Его вычислениями и теоремами пользовались во всем мире, называя его «королем математики».


В последующие годы биографии Карл Гаусс продолжил делать новые открытия. Он изучал гипергеометрический ряд и вывел первое доказательство основной теоремы алгебры.

В 1820 г. Гаусс провел геодезическую съемку Ганновера, применяя свои новаторские методы исчисления. В результате он стал родоначальником высшей геодезии. В науке появился новый термин – «гауссова кривизна».

Одновременно с этим Карл заложил фундамент для развития дифференциальной геометрии. В 1824 г. его избрали иностранным членом Петербургской Академии наук.

В следующем году математик открывает гауссовы комплексные целые числа, а позже публикует очередную книгу «Об одном новом общем законе механики», в которой также содержится немало новых теорем, понятий и основополагающих вычислений.

Со временем Карл Гаусс познакомился с молодым физиком Вильгельмом Вебером, с которым он занялся изучением электромагнетизма. Ученые изобретают электрический телеграф и проводят ряд экспериментов.

gauss-i-veber
Гаусс и Вебер

В 1839 г. 62-летний мужчина выучил русский язык. Многие его биографы утверждают, что он овладел русским для того, чтобы изучить открытия Лобачевского, о котором он высоко отзывался.


Позже Карл написал 2 труда – «Общая теория сил притяжения и отталкивания, действующих обратно пропорционально квадрату расстояния» и «Диоптрические исследования».

Коллеги Гаусса удивлялись его поразительной работоспособности и математическому таланту. В какой бы области он ни работал, ему удавалось везде делать открытия и усовершенствовать уже имеющиеся достижения.

Карл никогда не публиковал свои идеи, которые по его мнению были «сырыми» или незавершенными. По причине того, что он медлил с изданием многих собственных открытий, его опередили другие ученые.

Однако ряд научных достижений Карла Гаусса и так делал его недосягаемой фигурой, в области математики и многих других точных наук.

В его честь была названа единица измерения магнитной индукции в системе СГС, система единиц для измерения электромагнитных величин, а также одна из основополагающих астрономических постоянных – постоянная Гаусса.

Личная жизнь

Карл женился в возрасте 28 лет на девушке по имени Иоганна Остгоф. В этом браке родилось трое детей, из которых выжили двое – сын Йозеф и дочь Минна.

Супруга Гаусса скончалась спустя 4 года после свадьбы, вскоре после рождения третьего ребенка.

Через несколько месяцев ученый женился на Вильгельмине Вальдек, подруге его покойной жены. В этом союзе на свет появилось еще трое детей.

После 21 года супружеской жизни Вильгельмина умерла. Гаусс тяжело перенес уход возлюбленной, в результате чего у него началась тяжелая бессонница.

Смерть


Карл Гаусс умер 23 февраля 1855 года в Геттингене в возрасте 77 лет. За его огромный вклад в науку, монарх Ганновера Георг 5 распорядился отчеканить медаль с изображением великого математика.

Источник: interesnyefakty.org

Ранние годы, образование, карьера

Иоганн Карл Фридрих Гаусс (кратко), родился 30 апреля 1777 года в городе Брауншвейг, Нижняя Саксония, Германия. Отец Гебхард Дитрих Гаусс каменщик, садовник. Мать Доротея Бенце домохозяйка. В 1782 году, поступил в государственную школу Святой Екатерины. Маленький Карл с легкостью решал математические задачи, чем поразил своего учителя господина Бюттнера. Именно Бюттнер первым обнаружил математический талант у Карла. Он настоял на том, чтобы мальчик ни в коем случае не бросал учебу, а поступил в дальнейшем в университет. Карл начал обучаться у Мартина Бартельса, его старшего на восемь лет, талантливого математика. В 10 лет, Карл самостоятельно вывел теорему о биноме. В 1788 году, начал учиться в гимназии Мартино-Катаринеум, где он преуспел в математике, древнегреческом, латинском, английском языках. В 1792 году, он поступил в Кэролайн-колледж, по завершению получив степень по математике. В 1795 года, Гаусс поступил в Геттингенский университет. Спустя всего шесть месяцев Гаусс вывел математическую формулу, чтобы найти все правильные многоугольники, которые могут быть построены, используя только линейку и компас. В 1807 году, Гаусс принял кафедру астрономии в Геттингене, которую он занимал до конца своей жизни.


Научные достижения

Теория чисел была его любимым математическим занятием. В 1801 году, он опубликовал одну из величайших работ в истории математики – «Disquisitiones Arithmeticae», эта книга написана на латыни. В нем он записал формальные доказательства многих своих ранних открытий, здесь начинается современная теория чисел. Гаусс задокументировал значительные прорывы, такие как закон квадратичной взаимности, его формулировку современной модульной арифметики и конгруэнтность — идею, которая легла в основу его единого подхода к теории чисел. Почитатели таланта ученого, говорили, что Гаусс сделал для теории чисел то же, что Евклид сделал для геометрии. Он также очень глубоко изучал теорию потенциала и решению уравнений с частными производными — эти уравнения имеют многочисленные приложения в физике, включая электромагнетизм и гравитацию. В 1809 году он опубликовал важную двухтомную работу по движению небесных тел — Теорию движения небесных тел. В 1821 году, он изобрел гелиотроп это зеркало, которое отражает солнечные лучи на очень большие расстояния.


лиотропы использовались в геодезических работах в Германии более 150 лет. Он стал участвовать в геодезических работах для составления карт и увидел важность записи удаленных позиций с большой точностью. В 1832 году при содействии Вебера, Гаусс провел эксперименты, результаты которых позволили ему определить магнитное поле Земли, используя единицы миллиметров, граммов и секунд. Другими словами, он показал, что магнитное поле Земли можно определить, используя чисто механические измерения — массу, длину и время. В 1833 году Гаусс и Вебер изобрели одну из первых в мире телеграфных систем. Они также изобрели двоичный алфавитный код, обеспечивающий связь между зданием Вебера и астрономической обсерваторией Гаусса на расстоянии около 1,5 миль. К 1835 году их телеграфные линии были проложены рядом с первой железной дорогой Германии.
Гаусс использовал свой огромный математический арсенал для анализа поведения электрических и магнитных полей, он сформулировал два закона: Закон Гаусса, который связывает электрическое поле с распределением электрических зарядов, вызывающих его. Закон Гаусса о магнетизме, который гласит, что магнитные монополи не существуют.

Он открыл теорему Egregium, связывающую кривизну поверхности с расстояниями и углами.

Семья и последние годы

Гаусс терпеть не мог путешествовать и покинул Геттинген только один раз в 48 лет — чтобы поехать на конференцию в Берлин.
был увлечен литературой, его библиотека, насчитывала 6000 книг, написанных на разных языках. В 1805 году, он женился на Джоанне Остхофф, у них было трое детей. К сожалению, жена Гаусса Иоганна умерла в октябре 1809 года. В 1810 году Гаусс женился на Йоханне Вильгельмине, у них также было трое детей. Карл Фридрих Гаусс мирно скончался во сне в Геттингене 23 февраля 1855 года. Он был похоронен без мозга на Геттингенском кладбище Альбанифридхоф, недалеко от университета. Его мозг был сохранен и хранится в физиологическом отделении Геттингена. Гаусс так гордился своим молодым достижением в виде семиугольника, что он попросил вырезать фигуру на его надгробии. Его желание не было выполнено — каменщик сказал, что будет слишком трудно вырезать семиугольник, который не напоминает круг.

Источник: www.istmira.com

Биография

1777—1798 годы

Дед Гаусса был бедным крестьянином, отец — садовником, каменщиком, смотрителем каналов в герцогстве Брауншвейг. Уже в двухлетнем возрасте мальчик показал себя вундеркиндом. В три года он умел читать и писать, даже исправлял счётные ошибки отца. Согласно легенде, школьный учитель математики, чтобы занять детей на долгое время, предложил им сосчитать сумму чисел от 1 до 100. Юный Гаусс заметил, что попарные суммы с противоположных концов одинаковы: 1+100=101, 2+99=101 и т. д., и мгновенно получил результат
50 times 101=5050.

До самой старости он привык большую часть вычислений производить в уме.

С учителем ему повезло: М. Бартельс (впоследствии учитель Лобачевского) оценил исключительный талант юного Гаусса и сумел выхлопотать ему стипендию от герцога Брауншвейгского. Это помогло Гауссу закончить колледж Collegium Carolinum в Брауншвейге (1792—1795).

Свободно владея множеством языков, Гаусс некоторое время колебался в выборе между филологией и математикой, но предпочёл последнюю. Он очень любил латинский язык и значительную часть своих трудов написал на латыни; любил английскую, французскую и русскую литературу. В возрасте 62 лет Гаусс начал изучать русский язык, чтобы ознакомиться с трудами Лобачевского, и вполне преуспел в этом деле.

В колледже Гаусс изучил труды Ньютона, Эйлера, Лагранжа. Уже там он сделал несколько открытий в высшей арифметике, в том числе доказал закон взаимности квадратичных вычетов. Лежандр, правда, открыл этот важнейший закон раньше, но строго доказать не сумел; Эйлеру это также не удалось. Кроме этого, Гаусс создал «метод наименьших квадратов» (тоже независимо открытый Лежандром) и начал исследования в области «нормального распределения ошибок».


С 1795 по 1798 год Гаусс учился в Гёттингенском университете. Это наиболее плодотворный период в жизни Гаусса.

1796: Гаусс доказал возможность построения с помощью циркуля и линейки правильного семнадцатиугольника. Более того, он разрешил проблему построения правильных многоугольников до конца и нашёл критерий возможности построения правильного n-угольника с помощью циркуля и линейки: если n — простое число, то оно должно быть вида n=2^{2^k}+1 (числом Ферма). Этим открытием Гаусс очень дорожил и завещал изобразить на его могиле правильный 17-угольник, вписанный в круг.

С 1796 года Гаусс ведёт краткий дневник своих открытий. Многое он, подобно Ньютону, не публиковал, хотя это были результаты исключительной важности (эллиптические функции, неевклидова геометрия и др.). Своим друзьям он пояснял, что публикует только те результаты, которыми доволен и считает завершёнными. Многие отложенные или заброшенные им идеи позже воскресли в трудах Абеля, Якоби, Коши, Лобачевского и др. Кватернионы он тоже открыл за 30 лет до Гамильтона (назвав их «мутациями»).

Все многочисленные опубликованные труды Гаусса содержат значительные результаты, сырых и проходных работ не было ни одной.

1798: закончен шедевр «Арифметические исследования» (лат. Disquisitiones Arithmeticae), напечатана только в 1801 году.

В этом труде подробно излагается теория сравнений в современных (введенных им) обозначениях, решаются сравнения произвольного порядка, глубоко исследуются квадратичные формы, комплексные корни из единицы используются для построения правильных n-угольников, изложены свойства квадратичных вычетов, приведено его доказательство квадратичного закона взаимности и т. д. Гаусс любил говорить, что математика — царица наук, а теория чисел — царица математики.

1798—1816 годы

В 1798 году Гаусс вернулся в Брауншвейг и жил там до 1807 года.

Герцог продолжал опекать молодого гения. Он оплатил печать его докторской диссертации (1799) и пожаловал неплохую стипендию. В своей докторской Гаусс впервые доказал основную теорему алгебры. До Гаусса было много попыток это доказать, наиболее близко к цели подошёл Д’Аламбер. Гаусс неоднократно возвращался к этой теореме и дал 4 различных доказательства её.

С 1799 года Гаусс — приват-доцент Брауншвейгского университета.

1801: избирается членом-корреспондентом Петербургской Академии наук.

После 1801 года Гаусс, не порывая с теорией чисел, расширил круг своих интересов, включив в него и естественные науки. Катализатором послужило открытие малой планеты Церера (1801), вскоре после наблюдений потерянной. 24-летний Гаусс проделал (за несколько часов) сложнейшие вычисления по новому, открытому им же методу, и указал место, где искать беглянку; там она, к общему восторгу, и была вскоре обнаружена.

Слава Гаусса становится общеевропейской. Многие научные общества Европы избирают Гаусса своим членом, герцог увеличивает пособие, а интерес Гаусса к астрономии ещё более возрастает.

1805: Гаусс женился на Иоганне Остгоф. У них было трое детей.

1806: от раны, полученной на войне с Наполеоном, умирает его великодушный покровитель-герцог. Несколько стран наперебой приглашают Гаусса на службу (в том числе в Петербург). По рекомендации Александра фон Гумбольдта Гаусса назначают профессором в Гёттингене и директором Гёттингенской обсерватории. Эту должность он занимал до самой смерти.

1807: наполеоновские войска занимают Гёттинген. Все граждане облагаются контрибуцией, в том числе огромную сумму — 2000 франков — требуется заплатить Гауссу. Ольберс и Лаплас тут же приходят ему на помощь, но Гаусс отклонил их деньги; тогда неизвестный из Франкфурта прислал ему 1000 гульденов, и этот дар пришлось принять. Только много позднее узнали, что неизвестным был курфюрст Майнцский, друг Гёте.

1809: новый шедевр, «Теория движения небесных тел». Изложена каноническая теория учёта возмущений орбит.

Как раз в четвёртую годовщину свадьбы умирает Иоганна, вскоре после рождения третьего ребёнка. В Германии разруха и анархия. Это самые тяжёлые годы для Гаусса.

1810: новая женитьба, на Минне Вальдек, подруге Иоганны. Число детей Гаусса вскоре увеличивается до шести.

1810: новые почести. Гаусс получает премию Парижской академии наук и золотую медаль Лондонского королевского общества.

1811: появляется новая комета. Гаусс быстро и очень точно рассчитывает её орбиту. Начинает работу над комплексным анализом, открывает (но не публикует) теорему, позже переоткрытую Коши и Вейерштрассом: интеграл от аналитической функции по замкнутому контуру равен нулю.

1812: исследование гипергеометрического ряда, обобщающего разложение практически всех известных тогда функций.

Знаменитую комету «пожара Москвы» (1812) всюду наблюдают, пользуясь вычислениями Гаусса.

1815: публикует первое строгое доказательство основной теоремы алгебры.

1816—1855 годы

1821: в связи с работами по геодезии Гаусс начинает исторический цикл работ по теории поверхностей. В науку входит «гауссова кривизна». Положено начало дифференциальной геометрии. Именно результаты Гаусса вдохновили Римана на его классическую диссертацию о «римановой геометрии».

Итогом изысканий Гаусса была работа «Исследования относительно кривых поверхностей» (1822). В ней свободно используются общие криволинейные координаты на поверхности. Гаусс далеко развил метод конформного отображения, которое в картографии сохраняет углы (но искажает расстояния); оно применяется также в аэро/гидродинамике и электростатике.

1824: избирается иностранным членом Петербургской Академии наук.

1825: открывает гауссовы комплексные целые числа, строит для них теорию делимости и сравнений. Успешно применяет их для решения сравнений высоких степеней.

1831: умирает вторая жена, у Гаусса начинается тяжелейшая бессонница. В Геттинген приезжает приглашённый по инициативе Гаусса 27-летний талантливый физик Вильгельм Вебер, с которым Гаусс познакомился в 1828 году, в гостях у Гумбольдта. Оба энтузиаста науки сдружились, несмотря на разницу в возрасте, и начинают цикл исследований электромагнетизма.

1832: «Теория биквадратичных вычетов». С помощью тех же целых комплексных гауссовых чисел доказываются важные арифметические теоремы не только для комплексных, но и для вещественных чисел. Здесь же он приводит геометрическую интерпретацию комплексных чисел, которая с этого момента становится общепринятой.

1833: Гаусс изобретает электрический телеграф и (вместе с Вебером) строит его действующую модель.

1837: Вебера увольняют за отказ принести присягу новому королю Ганновера. Гаусс вновь остался в одиночестве.

1839: 62-летний Гаусс овладевает русским языком и в письмах в Петербургскую Академию просил прислать ему русские журналы и книги, в частности «Капитанскую дочку» Пушкина. Предполагают, что это связано с работами Лобачевского. В 1842 году по рекомендации Гаусса Лобачевский избирается иностранным членом-корреспондентом Гёттингенского королевского общества.

Умер Гаусс 23 февраля 1855 года в Гёттингене.

Современники вспоминают Гаусса как жизнерадостного, дружелюбного человека, с отличным чувством юмора.

В честь Гаусса названы:

  • кратер на Луне;
  • малая планета № 1001 (Gaussia);
  • единица измерения магнитной индукции в системе СГС;
  • вулкан Гауссберг в Антарктиде.

Научная деятельность

С именем Гаусса связаны фундаментальные исследования почти во всех основных областях математики: алгебре, дифференциальной и неевклидовой геометрии, в математическом анализе, теории функций комплексного переменного, теории вероятностей, а также в астрономии, геодезии и механике. «В каждой области глубина проникновения в материал, смелость мысли и значительность результата были поражающими. Гаусса называли „королем математиков“» [1].

Несколько студентов, учеников Гаусса, стали выдающимися математиками, например: Риман, Дедекинд, Бессель, Мёбиус.

Алгебра

Гаусс дал первые строгие, даже по современным критериям, доказательства основной теоремы алгебры.

Он открыл кольцо целых комплексных гауссовых чисел, создал для них теорию делимости и с их помощью решил немало алгебраических проблем. Указал знакомую теперь всем геометрическую модель комплексных чисел и действий с ними.

Гаусс дал классическую теорию сравнений, открыл конечное поле вычетов по простому модулю, глубоко проник в свойства вычетов.

Геометрия

Гаусс впервые начал изучать внутреннюю геометрию поверхностей. Он открыл характеристику поверхности (гауссову кривизну), которая не изменяется при изгибаниях, тем самым заложив основы римановой геометрии. В 1827 году опубликовал полную теорию поверхностей. Труды Гаусса по дифференциальной геометрии дали мощный толчок развитию этой науки на весь XIX век. Попутно он создал новую науку — высшую геодезию.

Гаусс также первым построил неевклидову геометрию и поверил в её реальность [2], но был вынужден держать свои исследования в секрете (вероятно, из-за того, что они шли вразрез с догматом евклидовости пространства в доминирующей в то время Кантовской философии). Тем не менее, сохранилось письмо Гаусса к Лобачевскому, в котором ясно выражено его чувство солидарности, а в личных письмах, опубликованных после его смерти, Гаусс восхищается работами Лобачевского. В 1817 году он писал астроному В. Ольберсу [3]:

Я прихожу всё более к убеждению, что необходимость нашей геометрии не может быть доказана, по крайней мере человеческим рассудком и для человеческого рассудка. Может быть, в другой жизни мы придем к взглядам на природу пространства, которые нам теперь недоступны. До сих пор геометрию приходится ставить не в один ранг с арифметикой, существующей чисто a priori, а скорее с механикой.

Гаусс доказал Theorema Egregium, основную теорему теории поверхностей.

В его бумагах обнаружены содержательные заметки по тому предмету, что позже назвали топологией. Причём он предсказал фундаментальное значение этого предмета.

Гаусс завершил теорию построения правильных многоугольников с помощью циркуля и линейки.

Математический анализ

Гаусс продвинул теорию специальных функций, рядов, численные методы, решение задач математической физики. Создал математическую теорию потенциала.

Много и успешно занимался эллиптическими функциями, хотя почему-то ничего не публиковал на эту тему.

Астрономия

В астрономии Гаусс, в первую очередь, интересовался небесной механикой, изучал орбиты малых планет и их возмущения. Он предложил теорию учёта возмущений и неоднократно доказывал на практике её эффективность.

В 1809 году Гаусс нашёл способ определения элементов орбиты по трём полным наблюдениям (если на три момента времени известны -время, прямое восхождение и склонение).

Другие достижения

Для минимизации влияния ошибок измерения Гаусс использовал свой метод наименьших квадратов, который сейчас повсеместно применяется в статистике.

Хотя Гаусс не первый открыл распространённый в природе нормальный закон распределения, но он настолько тщательно его исследовал, что график распределения с тех пор часто называют гауссианой.

В физике Гаусс заложил основы математической теории электромагнетизма, развил теорию капиллярности, теорию системы линз.

Введено понятие потенциала электрического поля.

Разработал систему электромагнитных единиц измерения СГС.

Сконструировал, совместно с Вебером, примитивный телеграф.

Список терминов, связанных с именем Гаусса

  • Алгоритм Гаусса (вычисления даты пасхи)
  • Гаусс (единица магнитной индукции)
  • Дискриминанты Гаусса
  • Гауссова кривизна
  • Интерполяционная формула Гаусса
  • Лента Гаусса
  • Малая планета № 1001 (Gaussia)
  • Метод Гаусса (решения систем линейных уравнений)
  • Метод Гаусса-Жордана
  • Метод Гаусса-Зейделя
  • Нормальное или Гауссово распределение
  • Прямая Гаусса
  • Пушка Гаусса
  • Ряд Гаусса
  • Теорема Гаусса — Ванцеля
  • Фильтр Гаусса
  • Формула Гаусса — Бонне

Труды на русском языке

  • Гаусс К. Ф. Труды по теории чисел. Перевод Б. Б. Демьянова, общая редакция И. М. Виноградова, комментарии Б. Н. Делоне. М., Изд-во АН СССР, 1959.
  • Гаусс К. Ф. Общие исследования о кривых поверхностях. В сборнике: Основания геометрии, М., ГИТТЛ, 1956.
  • Гаусс К. Ф. Отрывки из писем и черновиков, относящиеся к неевклидовой геометрии. В сборнике: Основания геометрии, М., ГИТТЛ, 1956.
  • Гаусс К. Ф. Избранные геодезические сочинения. Т. 1. М., Геодезиздат, 1957.

Источник: dic.academic.ru

Гаусса нередко называют наследником Эйлера. Они оба носили неформальное звание «король математиков» и удостоились посмертной уважительной шутки: «Он перестал вычислять и жить». Их родным языком был немецкий, но научные труды оба предпочитали писать по латыни. Впрочем, Гаусс оказался последним латинистом среди крупных ученых Европы.

Он с гордостью ощущал себя питомцем эпохи Просвещения. Действительно, в какую иную эпоху талантливый сын садовника и водопроводчика мог удостоиться персональной стипендии от герцога Брауншвейгского и быть принятым в Геттингенский университет» Этот долг Гаусс вернул родине с лихвой: математическая школа в Геттингене сделалась сильнейшей в Германии и процветала более ста лет » пока к власти не пришел Гитлер.

Математический талант Гаусса проявился в раннем детстве » и конечно, первым его увлечением стала арифметика. В 9 лет он открыл (во время школьного урока) формулу суммы арифметической прогрессии. Позднее Гаусс перенес все теоремы арифметики натуральных чисел на многочлены и на целые комплексные числа. В итоге в алгебре появилось общее понятие кольца. Заодно выяснилось, что множество простых чисел вида (4к+1) бесконечно, и что все они представимы в виде суммы двух квадратов. Это был первый новый факт такого рода, открытый со времен Эратосфена. Позднее ученик Гаусса » Петер Дирихле » намного превзошел учителя, доказав, что в любой арифметической прогрессии содержится бесконечное множество простых чисел (если первый член и разность этой прогрессии взаимно просты).

Гаусс до старости сохранил юношескую жажду знаний и огромное любопытство. Например, в 62 года он быстро выучил русский язык, чтобы самому разобраться в трудах своего коллеги » Николая Лобачевского. Но обычно Гаусс избегал читать чужие статьи или книги. Ему хватало формулировки основного результата; доказательство он придумывал сам, заодно открывая многие факты, о которых не подумал сам автор. Такая привычка оформилась в юности » когда 19-летний Гаусс решил сам освоить все достижения и методы алгебры, не пропуская ни одного яркого приложения этой древней науки.

Результат был поразительный. Гаусс нашел алгебраическое доказательство неразрешимости многих задач на построение циркулем и линейкой, которые мучили еще Пифагора. Ключевая идея Гаусса очень проста: надо изобразить точки плоскости комплексными числами (как начал делать Эйлер), и тогда геометрическая задача превратится в алгебраическую! Но как доказать неразрешимость алгебраической задачи»

Гаусс заметил, что любое построение циркулем и линейкой сводится на алгебраическом языке к решению цепочки квадратных уравнений. А каждая «непокорная» задача на построение сводится к решению уравнения-многочлена степени большей, чем 2. Почему же решение такого уравнения иногда не сводится к решению квадратных уравнений» Тут мало одних расчетов; нужно вводить новые математические понятия, отражающие суть дела.

Гаусс изобрел два таких понятия: поле и векторное пространство. В итоге векторная алгебра, давно привычная физикам и геометрам, стала самостоятельной алгебраической наукой. Оказалось, что комплексное число, достижимое с помощью циркуля и линейки, лежит в некотором поле размерности 2.. » а всякий корень неразложимого многочлена степени (к) лежит в поле размерности (к). Если интересующее нас число лежит в том и в другом поле » значит, число 2.. делится на (к); то есть, само число (к) является степенью двойки.

Из этого рассуждения следует, что корень любого неразложимого многочлена степени 3 нельзя построить циркулем и линейкой. Например, не удается разделить на 3 равные части угол в 60″, или построить треугольник по трем неравным медианам. Такой же запрет препятствует делению окружности на 7, 11, 13, 9 или 25 равных частей. Но для 5 или 17 частей запрета нет, поскольку числа 5-1 = 4 и 17-1 = 16 суть степени двойки. Поэтому эллины нашли способ построения правильного 5-угольника, а Гауссу удалось построить правильный 17-угольник. Он завещал изобразить эту фигуру на своем надгробии » что и было сделано. Однако проблема «квадратуры круга» Гауссу не покорилась.

К 24 годам Гаусс вошел в число самых известных математиков Европы. Но для полной славы нужно было отличиться в области небесной механики; тут судьба подбросила Гауссу достойную задачу. В первую ночь 1801 года астрономы обнаружили на небе малую планету Цереру, чья траектория лежит между Марсом и Юпитером. После немногих наблюдений планета была потеряна, и астрономы обратились за помощью к математикам. Гаусс первым откликнулся на этот призыв: по трем наблюдениям он сумел предсказать все будущие положения Цереры. Полвека спустя теория возмущений Гаусса позволила астрономам рассчитать положение на небе еще никем не виданной планеты » Нептуна.

В 30 лет Гаусс считался уже «королем» европейских математиков. Соперничать ему было не с кем » да он и не любил это занятие. Материальное благосостояние не угрожало профессору. Всесильный Наполеон тогда успешно грабил всю Европу, а Ганновер » особенно, поскольку это была вотчина короля непокорной Англии. Молодая жена Гаусса умерла. Только поиск новых тайн природы (в той мере, в какой они открываются через математику) помогал ученому отвлечься от невзгод.

Замечательный успех в области геометрических построений побудил Гаусса к поискам новых геометрических доказательств. Он увлекся старой, как мир, загадкой евклидова постулата о параллельных прямых. В 1818 году Гаусс догадался, что этот постулат может иметь иную формулировку » но не на плоскости, а на других поверхностях, неведомых Евклиду.

До конца жизни Гаусс хранил молчание о своих открытиях в области оснований геометрии » даже после того, как их повторили более молодые математики: Николай Лобачевский из Казани и Янош Больяи из Темешвароша. В чем тут дело» Кое-что можно понять из писем Гаусса к его друзьям; об остальном приходится догадываться. Чтобы убедить научный (и околонаучный) мир в независимости постулата Евклида » надо предъявить наглядную модель, где выполнены все прочие аксиомы, а эта заменена чем-то другим. Например, параллельных прямых может вовсе не быть, если любые две прямые пересекаются. Так обстоит дело на сфере, где роль прямых играют окружности наибольшего радиуса. Позднее эту геометрию назвали именем Римана, но в начале 19 века ее никто не принял бы всерьез. Иной вариант геометрии » со многими прямыми, проходящими через одну точку и не пересекающими данную прямую » называют геометрией Лобачевского. Она реализуется на поверхности с постоянной отрицательной кривизной: на так называемой псевдосфере, которая получается при вращении трактрисы («кривой преследования», похожей на гиперболу) вокруг ее оси. Гаусс то ли не смог построить псевдосферу, то ли не заметил ее уникальные свойства; а без этого он не решился огласить новую «неестественную» геометрию перед широкой публикой.

Но почему Гаусс не распространил свою гипотезу о параллельных прямых хотя бы в узком кругу математиков» Ведь именно так поступил Пифагор, обнаружив несоизмеримость диагонали квадрата с его стороной! Вероятно, Гаусс рассуждал так: если постулат о параллельных прямых независим от прочих аксиом, то исчезает единая наука геометрия! Она разделяется, по крайней мере, на три ветви » согласно трем вариантам постулата о параллельных (по Евклиду, по Риману и по Лобачевскому). А что дальше» Не продолжится ли ветвление геометрической науки неограниченно » по каждой новой аксиоме» Не охватит ли этот процесс всю математику» И кто захочет работать в такой раздробленной науке»

Видимо, так рассуждал Гаусс во второй половине своей жизни » и молчал, не в силах ответить себе и другим на этот грозный вопрос. Трудно ответить на него и в 20 веке » после того, как смутная догадка Гаусса превратилась в 1931 году в суровую теорему Геделя о неполноте любой формальной системы аксиом.

Но ученому надо жить и работать » даже когда его разум не дает ответа на мучающие его вопросы. После 1820 года Гаусс увлекся геометрией произвольных гладких поверхностей. Он дал определение их кривизны и нашел неожиданную связь кривизны с эйлеровой характеристикой поверхности. Занимался Гаусс и математической физикой: он строил математическую теорию магнетизма, в то время как в Англии Фарадей изобретал способы технического использования этой природной силы.

Не забывал Гаусс и о комплексных числах, которые так славно помогли ему разобраться в тайнах геометрических построений. Как будто развлекаясь, одинокий мудрец придумывал все новые доказательства своей теоремы о том, что всякий многочлен имеет комплексный корень. Видимо, Гаусс хотел понять: имеет ли эта «чисто алгебраическая» проблема хоть одно число алгебраическое решение, или неизбежны комбинации алгебры с геометрией, либо с математическим анализом»

Оказалось, что такие комбинации неизбежны. Любая сложная проблема решается лишь после нескольких ее переводов с одного математического языка на другой. И вот уже два столетия вся математическая наука развивается, а в режиме взаимопомощи и сплетения ее различных ветвей. Гаусс первым начал работать в таком режиме: как бы перебрасывая горящий уголек из одной ладони в другую. За это его называют «отцом современной математики».

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://www.sch57.msk.ru/

 

Источник: NauchnieStati.ru

Ранние годы

Будущий математик Гаусс родился 30.04.1777 г. Это, конечно, странное явление, но выдающиеся люди чаще всего рождаются в бедных семьях. Так случилось и в этот раз. Его дедушка был обычным крестьянином, а отец работал в герцогстве Брауншвейг садовником, каменщиком или водопроводчиком. Родители узнали, что их ребенок вундеркинд, когда малышу исполнилось два года. Спустя год Карл уже умеет считать, писать и читать. В школе его способности заметил учитель, когда дал задание подсчитать сумму чисел от 1 до 100. Гауссу быстро удалось понять, что все крайние числа в паре составляют 101, и за считанные секунды он решил это уравнение, умножив 101 на 50. Юному математику несказанно повезло с учителем. Тот помогал ему во всем, даже похлопотал за то, чтобы начинающему дарованию выплачивали стипендию. С ее помощью Карл сумел окончить колледж (1795 год).

Студенческие годы

После колледжа Гаусс учится в Геттингенском университете. Этот период жизни биографы обозначают как самый плодотворный. В это время ему удалось доказать, что начертить правильный семнадцатиугольник, используя лишь циркуль, представляется возможным. Он уверяет: можно нарисовать не только семнадцатиугольник, но и другие правильные многоугольники, пользуясь только циркулем и линейкой.

В университете Гаусс начинает вести специальную тетрадь, куда заносит все записи, которые касаются его исследований. Большинство из них были скрыты от глаз общественности. Для друзей он всегда повторял, что не сможет опубликовать исследование или формулу, в которых не уверен на 100%. По этой причине большинство из его идей были открыты другими математиками спустя 30 лет.

«Арифметические исследования»

Вместе с окончанием университета математик Гаусс закончил свой выдающийся труд «Арифметические исследования» (1798), но его напечатали лишь спустя два года.

Это обширное сочинение определило дальнейшее развитие математики (в частности, алгебры и высшей арифметики). Основная часть работы сосредоточена на описании абиогенеза квадратичных форм. Биографы уверяют, что именно с него начинаются открытия Гаусса в математике. Ведь он был первым математиком, у кого получилось вычислять дроби и переводить их в функции.

Также в книге можно отыскать полную парадигму равенств деления круга. Гаусс умело применяет эту теорию, пытаясь решить проблему начертания многоугольников при помощи линейки и циркуля. Доказывая эту вероятность, Карл Гаусс (математик) вводит ряд чисел, которые называют числами Гаусса (3, 5, 17, 257, 65337). Это значит, что при помощи простых канцелярских предметов можно построить 3-угольник, 5-угольник, 17-угольник и т.д. А вот 7-угольник построить не получится, ведь 7 не является «числом Гаусса». К «своим» числа математик также относит двойки, что умноженные на любую степень его ряда чисел (23, 25 и т.д.)

Этот результат можно назвать «чистой теоремой существования». Как уже было сказано вначале, Гаусс любил публиковать итоговые результаты, но никогда не указывал методы. Так же и в этом случае: математик утверждает, что построить правильный многоугольник вполне реально, вот только не уточняет, как именно это сделать.

Астрономия и царица наук

в 1799 году Карл Гаусс (математик) получает титул приват-доцента Брауншвейнского университета. Спустя два года ему предоставляют место в Петербургской Академии наук, где он выступает в качестве корреспондента. Он все еще продолжает изучать теорию чисел, но круг его интересов расширяется после открытия небольшой планеты. Гаусс пытается вычислить и указать ее точное местонахождение. Многие задаются вопросом, как называлась планета по вычислениям математика Гаусса. Однако немногим известно, что Церера — не единственная планета, с которой работал ученый.

В 1801 году впервые было обнаружено новое небесное тело. Это случилось неожиданно и внезапно, точно так же неожиданно планета была утеряна. Гаусс попытался обнаружить ее, применяя математические методы, и, как ни странно, она была именно там, куда указал ученный.

Астрономией ученый занимается более двух десятилетий. Всемирную известность получает метод Гаусса (математика, которому принадлежит множество открытий) для определения орбиты с помощью трех наблюдений. Три наблюдения – это место, в котором располагается планета в разный период времени. С помощью этих показателей была вновь найдена Церера. Точно таким же образом обнаружили еще одну планету. С 1802 года на вопрос, как называется планета, обнаруженная математиком Гаусса, можно было отвечать: "Паллада". Забегая немного вперед, стоит отметить, что в 1923 году именем известного математика назвали крупный астероид, вращающийся вокруг Марса. Гауссия, или астероид 1001, – это официально признанная планета математика Гаусса.

Это были первые исследования в области астрономии. Возможно, созерцание звездного неба стало причиной того, что человек, увлеченный числами, принимает решение обзавестись семьей. В 1805 году берет в жены Иоганну Остгоф. В этом союзе у пары рождается трое детей, но младший сын умирает в младенчестве.

В 1806 году скончался герцог, который покровительствовал математику. Страны Европы наперебой начинают приглашать Гаусса к себе. С 1807 года и до последних своих дней Гаусс возглавляет кафедру в Геттингенском университете.

В 1809 году умирает первая жена математика, в этом же году Гаусс издает свое новое творение — книгу под названием «Парадигма перемещения небесных тел». Методы для вычисления орбит планет, что изложены в этом труде, актуальны и сегодня (правда, с небольшими поправками).

Главная теорема алгебры

Начало ХІХ века Германия встретила в состоянии анархии и упадка. Эти годы были тяжелыми для математика, но он продолжает жить дальше. В 1810 году Гаусс второй раз связывает себя узами брака — с Минной Вальдек. В этом союзе у него появляется еще трое детей: Тереза, Вильгельм и Ойген. Также 1810 год был ознаменован получением престижной премии и золотой медали.

Гаусс продолжает свою работу в областях астрономии и математики, исследуя все больше и больше неизвестных составляющих этих наук. Его первая публикация, посвященная основной теореме алгебры, датируется 1815 годом. Главная идея заключается в следующем: число корней многочлена прямопропорциональна его степени. Позже высказывание приобрело несколько иной вид: любое число в степени, не равной нолю, априори имеет как минимум один корень.

Впервые он доказал это еще в 1799 году, но не был доволен своей работой, поэтому публикация вышла в свет спустя 16 лет, с некоторыми поправками, дополнениями и вычислениями.

Неевклидова теория

Согласно данным, в 1818 году Гауссу первому удалось построить базу для неевклидовой геометрии, теоремы которой были бы возможны в реальности. Неевклидовая геометрия представляет собой область науки, отличимой от евклидовой. Основная особенность евклидовой геометрии — в наличии аксиом и теорем, которые не требуют подтверждений. В своей книге «Начала» Евклид вывел утверждения, которые должны приниматься без доказательств, ведь они не могут быть изменены. Гаусс был первым, кому удалось доказать, что теории Евклида не всегда могут восприниматься без обоснований, так как в определенных случаях они не имеют прочной базы доказательств, которая удовлетворяет всем требованиям эксперимента. Так появилась неевклидова геометрия. Конечно, основные геометрические системы были открыты Лобачевским и Риманом, но метод Гаусса — математика, умеющего смотреть вглубь и находить истину, — положил начало этому разделу геометрии.

Геодезия

В 1818 году правительство Ганновера решает, что назрела необходимость измерить королевство, и это задание получил Карл Фридрих Гаусс. Открытия в математике на этом не закончились, а лишь приобрели новый оттенок. Он разрабатывает необходимые для выполнения задания вычислительные комбинации. В их число вошла гауссова методика «малых квадратов», которая подняла геодезию на новый уровень.

Ему пришлось составлять карты и организовывать съемку местности. Это позволило приобрести новые знания и поставить новые эксперименты, поэтому в 1821 году он начинает писать работу, посвященную геодезии. Этот труд Гаусса опубликовали в 1827, под названием «Общий анализ неровных плоскостей». В основу этой работы были положены засады внутренней геометрии. Математик считал, что необходимо рассматривать предметы, которые находятся на поверхности, как свойства самой поверхности, обращая внимание на длину кривых, игнорируя при этом данные объемлющего пространства. Несколько позже эта теория была дополнена трудами Б. Римана и А. Александрова.

Благодаря этому труду в научных кругах начало появляться понятие «гауссова кривизна» (определяет меру искривления плоскости в определенной точке). Начинает свое существование дифференциальная геометрия. И чтобы результаты наблюдений были достоверными, Карл Фридрих Гаусс (математик) выводит новые методы получения величин с высоким уровнем вероятности.

Механика В 1824 году Гаусс был заочно включен в состав членов Петербургской Академии наук. На этом его достижения не заканчиваются, он все так же упорно занимается математикой и презентует новое открытие: «целые числа Гаусса». Под ними подразумевают числа, имеющие мнимую и вещественную часть, которые являются целыми числами. По сути, своими свойствами гауссовские числа напоминают обычные целые, но те небольшие отличительные характеристики позволяют доказать биквадратичный закон взаимности. В любое время он был неподражаем. Гаусс — математик, открытия которого так тесно переплетены с жизнью, — в 1829 году внес новые коррективы даже в механику. В это время вышел его небольшой труд «О новом универсальном принципе механики». В нем Гаусс доказывает, что принцип малого воздействия, можно по праву считать новой парадигмой механики. Ученный уверяет, что этот принцип можно применять ко всем механическим системам, которые связаны между собой.

Механика

В 1824 году Гаусс был заочно включен в состав членов Петербургской Академии наук. На этом его достижения не заканчиваются, он все так же упорно занимается математикой и презентует новое открытие: «целые числа Гаусса». Под ними подразумевают числа, имеющие мнимую и вещественную часть, которые являются целыми числами. По сути, своими свойствами гауссовские числа напоминают обычные целые, но те небольшие отличительные характеристики позволяют доказать биквадратичный закон взаимности.

В любое время он был неподражаем. Гаусс — математик, открытия которого так тесно переплетены с жизнью, — в 1829 году внес новые коррективы даже в механику. В это время вышел его небольшой труд «О новом универсальном принципе механики». В нем Гаусс доказывает, что принцип малого воздействия, можно по праву считать новой парадигмой механики. Ученный уверяет, что этот принцип можно применять ко всем механическим системам, которые связаны между собой.

Физика

С 1831 года Гаусс начинает страдать от тяжелой бессонницы. Болезнь проявилась после смерти второй супруги. Он ищет утешения в новых исследованиях и знакомствах. Так, благодаря его приглашению в Геттинген приехал В. Вебер. С молодой талантливой личностью Гаусс быстро находит общий язык. Они оба увлечены наукой, и жажду знаний приходится унимать, обмениваясь своими наработками, догадками и опытом. Эти энтузиасты быстро принимаются за дело, посвящая свое время исследованию электромагнетизма.

Гаусс, математик, биография которого имеет большую научную ценность, в 1832 году создал абсолютные единицы, которыми и сегодня пользуются в физике. Он выделял три основные позиции: время, вес и расстояние (длина). Наряду с этим открытием в 1833 году, благодаря совместным исследованиям с физиком Вебером, Гауссу удалось изобрести электромагнитный телеграф.

1839 год ознаменован выходом еще одного сочинения — «Об общем абиогенезе сил тяготения и отталкивания, что действуют прямопропорционально расстоянию». На страницах подробно описан знаменитый закон Гаусса (еще известный как теорема Гаусса-Остроградского, или просто теорема Гаусса). Этот закон является одним из основных в электродинамике. Он определяет связь между электрическим потоком и суммой заряда поверхности, делимые на электрическую постоянную.

В этом же году Гаусс освоил русский язык. Он направляет письма в Петербург с просьбой выслать ему русские книги и журналы, особенно желал он ознакомиться с произведением «Капитанская дочка». Этот факт биографии доказывает, что, помимо способностей к вычислению, у Гаусса было множество других интересов и увлечений.

Просто человек

Гаусс никогда не спешил публиковаться. Он долго и кропотливо проверял каждую свою работу. Для математика все имело значение: начиная от правильности формулы и заканчивая изяществом и простотой слога. Он любил повторять, что его работы — как только что построенный дом. Владельцу показывают только конечный результат работы, а не остатки леса, которые раньше были на месте жилого помещения. Также и с его работами: Гаусс был уверен, что никому не стоит показывать черновые наброски исследования, только готовые данные, теории, формулы.

Гаусс всегда проявлял живой интерес к наукам, но особенно его интересовала математика, которую он считал «царицей всех наук». И природа не обделила его умом и талантами. Даже находясь в преклонном возрасте, он, по обычаю, проводил большую часть сложных вычислений в уме. Математик никогда заранее не распространялся о своих работах. Как и каждый человек, он боялся, что его не поймут современники. В одном из своих писем Карл говорит о том, что устал вечно балансировать на грани: с одной стороны, он с удовольствием поддержит науку, но, с другой, ему не хотелось ворошить «осиное гнездо непонятливых».

Всю свою жизнь Гаусс провел в Геттингене, только один раз ему удалось побывать в Берлине на научной конференции. Он мог длительное время проводить исследования, опыты, вычисления или измерения, но очень не любил читать лекции. Этот процесс он считал лишь досадной необходимостью, но если у него в группе появлялись талантливые ученики, он не жалел для них ни времени, ни сил и долгие годы поддерживал переписку обсуждая важные научные вопросы.

Карл Фридрих Гаусс, математик, фото, которого размещены в этой статье, был поистине удивительным человеком. Выдающимися знаниями мог похвастаться не только в области математики, но и с иностранными языками «дружил». Свободно разговаривал на латыни, английском и французском, освоил даже русский. Математик читал не только научные мемуары, но и обычную художественную литературу. Особенно ему нравились произведения Диккенса, Свифта и Вальтера Скотта. После того как его младшие сыновья эмигрировали в США, Гаусс начал интересоваться американскими писателями. Со временем пристрастился к датским, шведским, итальянским и испанским книгам. Все произведения математик непременно читал в оригинале.

Гаусс занимал весьма консервативную позицию в общественной жизни. С ранних лет он ощущал зависимость от людей, наделенных властью. Даже когда в 1837 году в университете начался протест против короля, который урезал профессорам содержание, Карл не стал вмешиваться.

Последние годы

В 1849 год Гаусс отмечает 50-летие присвоения докторской степени. К нему приехали известные математики, и это обрадовало его намного больше, чем присвоение очередной награды. В последние годы своей жизни уже много болел Карл Гаусс. Математику было сложно передвигаться, но ясность и острота разума от этого не пострадали.

Незадолго до смерти здоровье Гаусса ухудшилось. Врачи диагностировали болезнь сердца и нервное перенапряжение. Лекарства практически не помогали.

Математик Гаусс умер 23 февраля 1855 года, в возрасте семидесяти восьми лет. Известного ученого похоронили в Геттингене и, согласно его последней воле, выгравировали на надгробной плите правильный семнадцатиугольник. Позже его портреты напечатают на почтовых марках и денежных купюрах, страна навсегда запомнит своего лучшего мыслителя.

Таким был Карл Фридрих Гаусс – странным, умным и увлеченным. И если спросят, как называется планета математика Гаусса, можно не спеша ответить: «Вычисления!», ведь именно им он посвятил всю свою жизнь.

Источник: www.prodlenka.org


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.