Верхние слои атмосферы


АТМОСФЕРА

Атмосфера — газовая оболочка, окружающая планету Земля и вращающаяся вместе с ней. Совокупность разделов физики и химии, изучающих атмосферу, принято называть физикой атмосферы. Атмосфера определяет погоду на поверхности Земли, изучением погоды занимается метеорология, а длительными вариациями климата — климатология.

атмосфера

Толщина атмосферы 1500 км от поверхности Земли. Суммарная масса воздуха, то есть смеси газов, составляющих атмосферу: около 5,3 * 1015 т. Молекулярная масса чистого сухого воздуха составляет 29. Давление при 0°С на уровне моря 101 325 Па, или 760 мм. рт. ст.; критическая температура  140,7 °С; критическое давление 3,7 МПа. Растворимость воздуха в воде при 0 °С — 0,036 %, при 25 °С — 0,22 %.


Атмосферное давление — давление атмосферного воздуха на находящиеся в нем предметы и земную поверхность. Нормальным атмосферным давлением является показатель в 760 мм рт. ст. (101 325 Па). При повышении высоты на каждый километр давление падает на 100 мм.

Строение атмосферы.

Физическое состояние атмосферы определяется погодой и климатом. Основные параметры атмосферы: плотность воздуха, давление, температура и состав. С увеличением высоты плотность воздуха и атмосферное давление уменьшаются. Температура меняется также в зависимости от изменения высоты. Вертикальное строение атмосферы характеризуется различными температурными и электрическими свойствами, разным состоянием воздуха. В зависимости от температуры в атмосфере различают следующие основные слои: тропосферу, стратосферу, мезосферу, термосферу, экзосферу (сферу рассеяния). Переходные области атмосферы между соседними оболочками называют соответственно тропопауза, стратопауза и т.д.

строение атмосферы


 

Тропосфера — нижний, основной, наиболее изученный слой атмосферы, высотой в полярных областях 8—10 км, в умеренных широтах до 10—12 км, на экваторе — 16—18 км. В тропосфере сосредоточено примерно 80—90 % всей массы атмосферы и почти все водяные пары. При подъеме через каждые 100 м температура в тропосфере понижается в среднем на 0,65 °С и достигает —53 °С в верхней части. Этот верхний слой тропосферы называют тропопаузой. В тропосфере сильно развиты турбулентность и конвекция, сосредоточена преобладающая часть водяного пара, возникают облака, развиваются циклоны и антициклоны.

Стратосфера — слой атмосферы, располагающийся на высоте 11—50 км. Характерно незначительное изменение температуры в слое 11—25 км (нижний слой стратосферы) и повышение ее в слое 25—40 км от —56,5 до 0,8 °С (верхний слой стратосферы или область инверсии). Достигнув на высоте около 40 км значения 273 К (0 °С), температура остается постоянной до высоты 55 км. Эта область постоянной температуры называется стратопаузой и является границей между стратосферой и мезосферой.

Именно в стратосфере располагается слой озоносферы («озоновый слой», на высоте от 15—20 до 55— 60 км), который определяет верхний предел жизни в биосфере. Важный компонент стратосферы и мезосферы — озон, образующийся в результате фотохимических реакций наиболее интенсивно на высоте равной 30 км. Общая масса озона составила бы при нормальном давлении слой толщиной 1,7—4 мм, но и этого достаточно для поглощения губительного для жизни ультрафиолетового излучения Солнца. Озон (О3) — аллотропия кислорода, образуется в результате следующей химической реакции, обычно после дождя, когда полученное соединение поднимается в верхние слои тропосферы; озон имеет специфический запах.


В стратосфере задерживается большая часть коротковолновой части ультрафиолетового излучения (180—200 нм) и происходит трансформация энергии коротких волн. Под влиянием этих лучей изменяются магнитные поля, распадаются молекулы, происходит ионизация, новообразование газов и других химических соединений. Эти процессы можно наблюдать в виде северных сияний, зарниц, и других свечений. В стратосфере почти нет водяного пара.

Мезосфера начинается на высоте 50 км и простирается до 80—90 км. Температура воздуха до высоты 75—85 км понижается до 88 °С. Верхней границей мезосферы является мезопауза.

Термосфера (другое название — ионосфера) — слой атмосферы, следующий за мезосферой, — начинается на высоте 80—90 км и простирается до 800 км. Температура воздуха в термосфере быстро и неуклонно возрастает и достигает нескольких сотен и даже тысяч градусов.

Экзосфера — зона рассеяния, внешняя часть термосферы, расположенная выше 800 км. Газ в экзосфере сильно разрежен, и отсюда идет утечка его частиц в межпланетное пространство (диссипация).


изменение температуры и давления

Структура атмосферы

До высоты 100 км атмосфера представляет собой гомогенную (однофазную), хорошо перемешанную смесь газов. В более высоких слоях распределение газов по высоте зависит от их молекулярных масс, концентрация более тяжелых газов убывает быстрее по мере удаления от поверхности Земли. Вследствие уменьшения плотности газов температура понижается от 0 °С в стратосфере до -110 °С в мезосфере.

На высоте около 2000—3000 км экзосфера постепенно переходит в так называемый ближнекосмический вакуум, который заполнен сильно разреженными частицами межпланетного газа, главным образом атомами водорода. Но этот газ представляет собой лишь часть межпланетного вещества. Другую часть составляют пылевидные частицы кометного и метеорного происхождения. Кроме этих чрезвычайно разреженных частиц, в это пространство проникает электромагнитная и корпускулярная радиация солнечного и галактического происхождения.

На долю тропосферы приходится около 80 % массы атмосферы, на долю стратосферы — около 20 %; масса мезосферы — не более 0,3 %, термосферы — менее 0,05 % от общей массы атмосферы. На основании электрических свойств в атмосфере выделяют нейтросферу и ионосферу. В настоящее время считают, что атмосфера простирается до высоты 2000—3000 км.


В зависимости от состава газа в атмосфере выделяют гомосферу и гетеросферу. Гетеросфера — это область, где гравитация оказывает влияние на разделение газов, т.к. их перемешивание на такой высоте незначительно. Отсюда следует переменный состав гетеросферы. Ниже ее лежит хорошо перемешанная, однородная по составу часть атмосферы называемая гомосферой. Граница между этими слоями называется турбопаузой, она лежит на высоте около 120 км.

строение атмосферы

Состав атмосферы

Атмосфера Земли — воздушная оболочка Земли, состоящая в основном из газов и различных примесей (пыль, капли воды, кристаллы льда, морские соли, продукты горения), количество которых непостоянно. Основным газами являются азот (78 %), кислород (21 %) и аргон (0,93 %). Концентрация газов, составляющих атмосферу, практически постоянна, за исключением углекислого газа CO2 (0,03 %).


Также в атмосфере содержатся SO2, СН4, N, СО, углеводороды, НСl, НF, пары Hg, I2, а также NO и многие другие газы в незначительных количествах. В тропосфере постоянно находится большое количество взвешенных твердых и жидких частиц (аэрозоль).

Таблица «Атмосфера»

атмосфера таблица

атмосфера таблица 2

 

Источник: uchitel.pro

Тропосфера: где происходит погода

Из всех слоев атмосферы тропосфера является тем, с которым мы больше всего знакомы (осознаете ли вы это или нет), так как мы живем на ее дне — поверхности планеты. Она окутывает поверхность Земли и простирается вверх на несколько километров. Слово тропосфера означает «изменение шара». Очень подходящее название, так как этот слой, где происходит наша повседневная погода.


Начиная с поверхности планеты, тропосфера поднимается на высоту от 6 до 20 км. Нижняя треть слоя, ближайшая к нам, содержит 50% всех атмосферных газов. Это единственная часть всего состава атмосферы, которая дышит. Благодаря тому, что воздух нагревается снизу земной поверхностью, поглощающей тепловую энергию Солнца, с увеличением высоты температура и давление тропосферы понижаются.

На вершине находится тонкий слой, называемый тропопаузой, который является всего лишь буфером между тропосферой и стратосферой.

Стратосфера: дом озона

Стратосфера — следующий слой атмосферы. Он простирается от 6-20 км до 50 км над земной поверхностью Земли. Это слой, в котором летают большинство коммерческих авиалайнеров и путешествуют воздушные шары.

Здесь воздух не течет вверх и вниз, а движется параллельно поверхности в очень быстрых воздушных потоках. По мере того, как вы поднимаетесь, температура увеличивается, благодаря обилию природного озона (O3) — побочного продукта солнечной радиации и кислорода, который обладает способностью поглощать вредные ультрафиолетовые лучи солнца (любое повышение температуры с высотой в метеорологии, известно как «инверсия»).

Поскольку стратосфера имеет более теплые температуры внизу и более прохладные наверху, конвекция (вертикальные перемещения воздушных масс) встречается редко в этой части атмосферы. Фактически, вы можете рассматривать из стратосферы бушующую в тропосфере бурю, поскольку слой действует как «колпачок» для конвекции, через который не проникают штормовые облака.

После стратосферы снова следует буферный слой, на этот раз называемый стратопаузой.

Мезосфера: средняя атмосфера


Мезосфера находится примерно на расстоянии 50-80 км от поверхности Земли. Верхняя область мезосферы является самым холодным естественным местом на Земле, где температура может опускаться ниже -143° C.

Термосфера: верхняя атмосфера

После мезосферы и мезопаузы следует термосфера, расположенная между 80 и 700 км над поверхностью планеты, и содержит менее 0,01% всего воздуха в атмосферной оболочке. Температуры здесь достигают до +2000° C, но из-за сильной разреженности воздуха и нехватки молекул газа для переноса тепла, эти высокие температуры воспринимаются, как очень холодные.

Экзосфера: граница атмосферы и космоса

Верхние слои атмосферы

На высоте около 700-10000 км над земной поверхностью находится экзосфера — внешний край атмосферы, граничащий с космосом. Здесь метеорологические спутники вращаются вокруг Земли.

Как насчет ионосферы?

Ионосфера не является отдельным слоем, а на самом деле этот термин используется для обозначения атмосферы на высоте от 60 до 1000 км. Она включает в себя самые верхние части мезосферы, всю термосферу и часть экзосферы. Ионосфера получила свое название, потому что в этой части атмосферы излучение Солнца ионизируется, когда проходит магнитные поля Земли на севере и юге. Это явления наблюдается с земли как северное сияние.


Источник: NatWorld.info

Атмосфера и ее озоновый слой защищают жизнь на Земле от непосредственного воздействия этих губительных для всего живого мощных потоков вещества и энергии, но и для собственно атмосферных процессов их поглощение не проходит бесследно. Резко усиливается ионизация воздуха в верхних слоях атмосферы, подвижная граница ионосферы опускается. Это легко обнаруживается по увеличению частоты и яркости полярных сияний, возрастает уровень радиопомех и возникают дополнительные проблемы для систем связи. Но повышение уровня ионизации воздуха захватывает и нижние слои атмосферы, изменяя характер образования и распределения облачности, активируя электрические процессы в атмосфере, в частности, увеличивая число и интенсивность гроз, изменяя распределение осадков. Резкие отклонения от среднемноголетних норм температуры и осадков вызывают на одних территориях засуху, на других — переувлажнение, что неизбежно сказывается как на природных комплексах, так и на хозяйственной деятельности людей.[ …]

ВЕРХНИЕ СЛОИ АТМОСФЕРЫ. Слои атмосферы на больших высотах над земной поверхностью: стратосфера, мезосфера, термосфера, ионосфера, экзосфера.[ …]


Верхние слои атмосферы отличаются многими удивительными свойствами, которые мы изучаем с помощью ракет, искусственных спутников и орбитальных космических кораблей. Но эта тема заслуживает отдельной книги. Здесь же мы заговорили о верхней атмосфере лишь для иллюстрации того факта, что вся масса воздуха, в котором «плавает» наша массивная Цланета, распределяется вокруг нее чрезвычайно тонким слоем.[ …]

Верхние слои атмосферы в значительной степени определяют условия жизни на Земле. Они выполняют роль защитного барьера на пути излучений и частиц высоких энергий из Космоса. Особую опасность для биосферы представляет жесткое ультрафиолетовое излучение Солнца в диапазоне длин волн 1 < 310 нм.[ ...]

В атмосфере: изменение температуры на каждом уровне в атмосфере, обусловленное радиационным балансом. Такие изменения невелики в сравнении с изменениями температуры, обусловленными нерадиационным теплообменом между земной поверхностью и атмосферой и турбулентной передачей тепла в атмосфере, а также в сравнении с адиабатическими изменениями. Однако они играют очень важную (по-видимому, определяющую) роль в изменении температурного режима верхних слоев атмосферы (стратосферы, мезосферы, термосферы).[ …]

В верхних слоях атмосферы, таким образом, разрушаются молекулы 02, Ы2 и образуется атомарный кислород и азот. Атомарный кислород, присоединяясь к двухатомному, образует озон. В приземном слое атмосферы происходят процессы фотосинтеза, при которых разрушаются молекулы углекислого газа. При фотохимических реакциях затрачивается энергия поглощаемых фотонов.[ …]

В верхних слоях атмосферы предпочтительнее использовать удельную влажность, так как она более консервативна.[ …]

Этот слой озона обладает несколькими интересными эффектами. Вследствие своей поглощающей способности озон выполняет роль фильтра для ультрафиолетовой радиации, пытающейся достичь поверхности земли. Поэтому на низких высотах фотохимическая активность несколько уменьшается. С точки зрения человека, это уменьшение существенно вне связи с проблемой смога. Организм современного человека не смог бы существовать в условиях солнечной ультрафиолетовой радиации, если бы она не была ослаблена слоем озона. Возможно, что сверхзвуковая авиация может вызвать изменение в содержании озона верхних слоев атмосферы, что вызвало возражения против использования такой авиации.[ …]

ВЫСШИЕ СЛОИ АТМОСФЕРЫ. Обычно имеются в виду термосфера, ионосфера и экзосфера, в отличие от верхних слоев атмосферы и высоких слоев атмосферы.[ …]

Озоновый слой расположен в верхних слоях атмосферы (стратосфере) и содержит большое количество озона (03). Он начинается на высотах около 8 км над полюсами и 17 км над экватором. Его назначение — поглощать коротковолновое ультрафиолетовое излучение. В 1985 г. специалисты по исследованию атмосферы из Британской Антарктической Службы сообщили о совершенно неожиданном факте: весеннее содержание озона в атмосфере над станцией Халли-Бей в Антарктиде уменьшилось за период с 1977 по 1984 г. на 40 %. Вскоре этот вывод подтвердили другие исследователи, показавшие также, что область пониженного содержания озона простирается за пределы Антарктиды и по высоте охватывает слой от 12 до 24 км, т.е. значительную часть нижней части стратосферы.[ …]

ИОНОСФЕРА — верхний слой атмосферы (на расстоянии 80 — 500 км от поверхности Земли), выделяемый в пределах термосферы. И. отличается значительным количеством ионизированных молекул и атомов атмосферных газов и свободных электронов.[ …]

Космические лучи, попадая в верхние слои атмосферы, сильно ионизируют воздух. Первичные космические лучи, приходящие в атмосферу из межпланетного пространства, состоят в основном из протонов. В них присутствует и небольшая доля других частиц, обладающих высокой энергией.[ …]

Следует отметить, что направление ветра в верхних слоях атмосферы может не совпадать с его направлением в приземном слое. Характерным примером такого несовпадения являются ветровые потоки в г. Кузнецке. Господствующее направление в этом городе в верхних слоях атмосферы и в приземном слое не совпадают друг с другом. Такое изменение направления ветра вызвано рельефом местности в районе этого города.[ …]

Аэрозоли наблюдаются как в тропосфере, так и в верхних слоях атмосферы. Концентрация их убывает с высотой. Возникают они в результате засорения атмосферы от земной поверхности, индустриальных загрязнений, вулканических извержений и космической пылью. Каждый кубический сантиметр воздуха, которым мы дышим в городе, содержит от 10 до 100 тыс. мельчайших частиц, в сельской местности — около 5 тыс., над океанами — еще меньше.[ …]

Для изучения распределения аэрозольных частиц в верхних слоях атмосферы наиболее распространенными являются следующие методы: лазерное, или лидарное, зондирование атмосферы, измерения с ИСЗ ослабления солнечной радиации в момент, близкий к уходу спутника в тень Земли; импакторные измерения с аэростатов или самолетов, с помощью фотоэлектрических счетчиков на ракетах, самолетах и аэростатах.[ …]

Известно, что большинство реакций газообразных загрязнений в атмосфере связано с термо- или фотоокислением. В верхних слоях атмосферы на высоте более 30 км от земной поверхности, где фотохимические реакции протекают при участии солнечного излучения с длиной волны менее 290 нм, происходит полный распад как органических, так и неорганических веществ, попавших из биосферы. Сложные молекулы распадаются, возвращаясь в приземный слой в виде углекислого газа, воды, кислорода, азота и пр.[ …]

Фотохимические реакции не являются единственными реакциями в атмосфере. Там происходят многочисленные превращения с участием десятков тысяч химических соединений, течение которых ускоряется радиацией (солнечная радиация, космическое излучение, радиоактивное излучение), а также каталитическими свойствами присутствующих в воздухе твердых частиц и следов тяжелых металлов. Значительные изменения претерпевают попадающие в воздух диоксид серы и сероводород, галогены и межгалогенные соединения, оксиды азота и аммиак, альдегиды и амины, сульфиды и меркаптаны, нитросоединения и олефины, полиядерные ароматические углеводороды и пестициды. Иногда эти реакции могут служить причиной не только качественных, но и количественных изменений в глобальном составе атмосферы планеты, приводящих к изменению климата на Земле. Аккумулируясь в верхних слоях атмосферы, фтор-хлоруглеводороды фотолитически разлагаются с образованием оксидов хлора, которые взаимодействуют с озоном, уменьшая его концентрацию в стратосфере [5]. Аналогичный эффект наблюдается и при реакциях озона с оксидами серы, оксидами азота и углеводородами. В результате разложения вносимых в почву азотных удобрений происходит эмиссия в атмосферу оксида азота N0, который взаимодействует с атмосферным озоном, превращая его в кислород. Все эти реакции уменьшают содержание озона в слоях атмосферы на высоте 20—40 км, которые защищают приземный слой атмосферы от солнечной радиации высокой энергии. Подобные превращения приводят к глобальным изменениям климата планеты.[ …]

Без сомнения, жизнь на Земле приспособилась к наличию защитного слоя озона на большой высоте и благодаря этому процветает. Важно, что вблизи от Земли количество озона невелико. Источники появления этого газа на малых высотах имеют локальный характер. Очевидно, некоторое количество озона переходит из верхних слоев атмосферы при особых метеорологических условиях. В иных случаях он образуется таким же путем, как и в стратосфере, т. е. под воздействием солнечного света, а также при химических реакциях, протекающих с участием молекулярного и атомарного кислорода.[ …]

Огромные количества воды, испаряясь, изо дня в день поднимаются в верхние слои атмосферы с поверхности мирового океана. Часть этих испарений возвращается в океан в виде выпадающих над ним атмосферных осадков. Другая же часть, увлекаемая воздушными потоками, уносится на большие расстояния над землей. Сгущаясь, эти испарения превращаются в облака или туман и затем в виде дождя, снега или града выпадают на землю. Часть этой воды через реки вновь стекает в моря, часть испаряется, а оставшаяся часть, просачиваясь в землю, превращается в грунтовую воду. Но здесь не прекращается движение воды, которая в виде подземных потоков вновь возвращается в моря. Так заканчивается большой круговорот воды в природе.[ …]

Вскоре удалось найти и защитника Земли от ультрафиолета. Им оказался слой озона, содержащийся главным образом на высотах 20 — 30 км. Он образовался благодаря тому, что кислород в верхних слоях атмосферы ионизируется ультрафиолетовыми лучами Солнца. Так солнечные лучи защитили Землю от самих себя.[ …]

Такие осадки, как роса, иней, туман, изморозь, гололед, образуются не в верхних слоях атмосферы, а в приземном слое. В условиях понижения температуры у поверхности Земли воздух не всегда может удерживать водяной пар, который и выпадает на различных предметах в виде росы, а если эти предметы имеют отрицательную температуру, то в виде инея. При воздействии теплого воздуха на холодные предметы выпадает изморозь — налет рыхлых кристалликов льда и снега. При значительных концентрациях водяных паров в приземном слое атмосферы образуется туман. Образование ледяной корки на поверхности земли из выпадающих дождевых осадков носит название гололедицы, кстати под гололедом понимают выпадающие и замерзающие по мере падения жидкие осадки.[ …]

Существует гипотеза неорганического происхождения свободного кислорода в атмосфере Земли. Согласно этой гипотезе, существование в верхних слоях атмосферы процесса разложения молекул воды на водород и кислород под действием жестких космических излучений должно иметь следствием постепенную утечку легкого, подвижного водорода в космическое пространство и накопление в атмосфере свободного кислорода, что без всякого участия жизни должно восстановительную первичную атмосферу планеты превратить в окислительную. По расчетам, этот процесс мог за 1—1,2 млрд. лет создать на Земле окислительную атмосферу. Но он неизбежно идет и на других планетах Солнечной системы, причем в течение всего времени их существования, а это примерно 4,5 млрд. лет. Тем не менее ни на одной планете нашей системы, кроме Земли и, с несравненно меньшим содержанием кислорода, Марса, практически нет свободного кислорода и до сих пор их атмосферы сохраняют восстановительные свойства. Очевидно, и на Земле этот процесс мог повысить содержание окислов углерода и азота в атмосфере, но не настолько, чтобы сделать ее окислительной. Так что наиболее правдоподобной остается гипотеза, связывающая наличие на Земле свободного кислорода с деятельностью фотосинтезирующих организмов.[ …]

Как показывают наблюдения, степенной закон для одномерного спектра микропульсаций температуры в верхних слоях атмосферы выполняется [13, 16] до масштабов порядка / = 2я/х 2яХ Х(102 — 103) м, что существенно превышает соответствующие значения в приземном слое.[ …]

В настоящее время принято считать, что биосфера (как часть среды обитания живых организмов) включает верхние горизонты твердой составляющей Земли (литосфера), водное пространство (гидросфера), приземной слой воздуха (тропосфера 8—12 км). На высоте 12—40 км от поверхности Земли расположена стратосфера, в которой наблюдается повышенное содержание трехатомного кислорода (озона). Этот газ является очень сильным окислителем, в верхних слоях атмосферы (стратосферы) он образуется под действием ультрафиолетового излучения (УФИ). В природных условиях озон может локально образовываться в нижних слоях атмосферы при наличии ионизирующего излучения или при электрическом разряде во время грозы.[ …]

В настоящее время необходимы глобальные математические модели, в которые входили бы подсистемы взаимодействия между атмосферой и водой, атмосферой и поверхностью почвы, процессы в каждом из элементов окружающей среды, взаимодействие верхнего слоя атмосферы с космосом, механизмы саморегулирования в природе, влияние деятельности человека на окружающую среду. При значительном объеме возможностей подобная модель должна быть достаточно детальна для регионов Земли. На такой модели можно будет оценить крупные инженерные решения, деятельность городов, варианты гидросистем, размещение заводов и т.д.[ …]

Из всех атмосферных газов и частиц, участвующих в поглощении части солнечных лучей, наиболее активным является озон. В верхних слоях атмосферы значительная часть энергии солнечного света приходится на ультрафиолетовые лучи. Свое название они получили по тому месту, которое занимают в спектре солнечного света. Наблюдая радугу, вы можете заметить, что она состоит из правильно чередующегося ряда цветов: красного, оранжевого, желтого, зеленого, синего и фиолетового. Все эти цвета появляются в результате разложения солнечного света. Радугу мы видим, когда несметные капельки дождя преломляют и отражают солнечный свет. Действуя как крохотные призмы, они разлагают его на составляющие цвета. Если считать свет состоящим из воли различной длины, легко можно объяснить, почему все это происходит.[ …]

В воздухе всегда присутствует озон, концентрация которого у земной поверхности в среднем составляет 10-6%. Озон образуется в верхних слоях атмосферы из атомарного кислорода в результате фотохимической реакции под влиянием солнечной радиации, вызывающей диссоциацию молекул кислорода. Слой озона удивительно тонок. Если бы этот газ сосредоточить у поверхности Земли, то он образовал бы пленку лишь в 2—4 мм толщиной (минимум— в районе экватора, максимум — у полюсов). Однако и эта пленка надежно защищает нас, почти полностью поглощая опасные ультрафиолетовые лучи.[ …]

Большие значения ошибок в нижних слоях обусловлены тем, что для них наибольшими погрешностями являются АР (кт), в случае же верхних слоев атмосферы сказывается малая информационная обеспеченность измерений. Для того чтобы оценить погрешности восстановления профилей Н20 при достаточно точном измерении полуширины аппаратной функции, были проведены аналогичные численные эксперименты для (АРт) а. ф=0. Как показали результаты экспериментов (табл. 6.7), точность восстановления в нижних слоях атмосферы в этом случае увеличивается на 10 … 15%. Точность восстановления в верхних слоях атмосферы не изменяется, поскольку для них она определяется главным образом информационной обеспеченностью измерений.[ …]

Выделяемый растениями кислород не только является одним из источников жизнедеятельности организмов, но и защищает все живое на Земле: кислород в верхних слоях атмосферы поглощает ультрафиолетовое излучение с длиной волны 2Ю-7 м и, кроме того, образует защитный слой озона, задерживающий ультрафиолетовое излучение других длин волн.[ …]

После многочисленных международных экспедиций в Антарктиде было установлено, что помимо различных физико-географических факторов все же основным является наличие в атмосфере значительного количества хлорфторуглеродов (фпеонов). Последние широко применяются и производстве и быту в качестве хладоагентов, пенообразователей, растворителей в аэрозольных упаковках и т.д. Фреоны, поднимаясь в верхние слои атмосферы, подвергаются фотохимическому разложению с образованием окиси хлора, интенсивно разрушающей озон. Всего в мире производится около 1300 тыс. т озоноразрушающих веществ. В последние годы установлено, что выбросы сверхзвуковых самолетов могут привести к разрушению 10% озонного слоя атмосферы, так один запуск космического корабля типа “Шаттл” приводит к “гашению” не менее 10 млн т озона. Одновременно с истощением озонового слоя в стратосфере отмечается увеличение концентрации озона в тропосфере у поверхности Земли, но это не сможет компенсировать истощение озонового слоя, так как его масса в тропосфере едва составляет 10% от массы в озоносфере.[ …]

Выбросы вредных веществ, содержащихся в отходящих газах промышленных предприятий, осуществляются через дымовые трубы. Главное их назначение — отводить выбросные газы в верхние слои атмосферы (во всяком случае, за пределы приземного слоя) и рассеивать их. Рассеивание является одним из путей достижения установленных нормативов качества воздуха в приземном слое атмосферы в районе расположения предприятия.[ …]

Реальностью этого фактора не следует пренебрегать, но есть основания полагать, что его важность преувеличена вследствие неправильного применения в условиях разреженной верхней атмосферы результатов, справедливых лишь для газов, находящихся при не слишком низких давлениях. Имеется огромная разница между газом плотным и разреженным — между хаотическим тепловым движением плотного .газа и упорядоченным молекулярным движением разреженного. В нижних слоях атмосферы известное количество молекул может достигать критической скорости 11,2 км/с, но так как средний свободный пробег чрезвычайно мал, эта скорость быстро гасится, соударениями. Разумеется, было бы ошибкой рассматривать все частицы со скоростью, превышающей 11,2 км/с, как потерянные атмосферой. Напротив, в верхней атмосфере средний свободный пробег очень велик, но направления движений нельзя считать распределенными случайно, и вступает в силу теорема Кивелёвича [9] о существовании верхнего предела соударений в системе п тел. Следовательно, очень мало вероятно, что молекула достигает критической скорости в результате механизма соударений. И как следствие этого рассеяние атмосферы во внешнее пространство происходит столь медленно, что им можно пренебречь, особенно по сравнению с рассеянием в земной коре. Это заключение справедливо лишь в современных условиях; кроме того, мы оставили без рассмотрения очень важный факт — ионизацию верхних слоев атмосферы солнечным излучением,— что может ускорить процесс рассеяния атмосферы в пространство. Имеется, однако, компенсирующий вклад космйческого вещества, попадающего на внешнюю границу атмосферы и задерживающегося в ней, которым не следует пренебрегать.[ …]

Земная поверхность обладает в целом положительным радиационным балансом и вследствие этого она является основным источником энергии для атмосферных процессов. От земной поверхности в атмосферу тепло поступает в явном виде при их контактном теплообмене. Потоки скрытого тепла обусловлены фазовыми переходами воды на земной поверхности, прежде всего испарением с нее. Радиационный приток тепла к атмосфере обусловлен эффективным излучением земной поверхности. Тепло, поступающее от земной поверхности на нижнюю границу приземного слоя, распространяется затем в верхние слои атмосферы путем турбулентной теплопроводности. Турбулентный теплообмен, несомненно, происходит во всей атмосфере и в верхних слоях водоемов, однако он наиболее интенсивен в приземном слое атмосферы и в деятельном слое водоемов. В удаленных от поверхности слоях атмосферы и водоемов турбулентный теплообмен уменьшается. Это происходит прежде всего вследствие уменьшения в них вертикальных градиентов температуры, а в атмосфере еще и влагосодержания.[ …]

Схема образования (УНЧ-индукции) поляризованных облаков ■ активных водных аэрозолей («факелов» над АЭС, ТУ-башнями, объектами пирамидальной формы, над конвективными потоками в нижних слоях атмосферы и «обращенных» пирамид в верхних слоях атмосферы). Схема образования (УНЧ-индукции) поляризованных облаков ■ активных водных аэрозолей («факелов» над АЭС, ТУ-башнями, объектами пирамидальной формы, над конвективными потоками в нижних слоях атмосферы и «обращенных» пирамид в верхних слоях атмосферы).

ИЗВЕРЖЕНИЯ ВУЛКАНОВ. Извержения из недр земли по трещинам и каналам в земной коре горячих газов, водяного пара, обломков горных пород, пепла и лавы. Пепел, выбрасываемый при И. В., вызывает сильнейшие местные помутнения атмосферы, ослабление солнечной радиации и убывание освещенности. Распространяясь с воздушными течениями в высоких слоях атмосферы, тончайшая вулканическая пыль (пепел) обусловливает такие оптические явления, как аномально красная окраска зорь, даже в местах, весьма удаленных от места извержения. С Й. В. связывалось возникновение облаков в стратосфере и мезосфере; в частности, серебристые облака рассматривались как скопления вулканической пыли. Предполагалось также, что при И. В. в верхние слои атмосферы может забрасываться и водяной пар, следствием конденсации которого являются перламутровые и, может быть, серебристые облака.[ …]

Здесь h v — квант света с длиной волны не более 235 нм. На образование озона тратится около 5% поступающей к Земле солнечной энергии — около 8,6 • 1015 Вт. Реакции легко обратимы. При распаде озона эта энергия выделяется, за счет чего в верхних слоях атмосферы поддерживается высокая температура. Средняя концентрация озона в атмосфере составляет около 10 6 объемных процентов; максимальная концентрация О3 — до 4 • 10 6 объемных процентов достигается на высотах 20—25 км.[ …]

Велика роль и микрогазов, хотя их содержание в атмосферном воздухе сравнительно мало. Так, озон служит своеобразным фильтром, не пропускающим жесткое ультрафиолетовое излучение Солнца, губительное для всех организмов. Пары воды после диссоциации на ионы Н+ и ОН в верхних слоях атмосферы препятствуют улетучиванию многих газов в космическое пространство. Наконец, ряд микрогазов играет важную роль в изменении теплового баланса Земли вследствие так называемого парникового эффекта, проявляющегося в постепенном потеплении на поверхности Земли. Газы, вызывающие этот эффект (их принято называть парниковыми газами), пропускают видимый свет, но задерживают инфракрасное излучение. Солнечный свет, проходя через атмосферу, нагревает поверхностные слои Земли, которые начинают испускать невидимые тепловые, или инфракрасные, лучи, в результате чего тепло отводится в космическое пространство. При неизменном содержании парниковых газов в атмосфере тепловой баланс Земли постоянен. Если же их концентрация в воздухе повышается, то соответственно изменяется и температурный баланс — происходит разогревание земной поверхности.[ …]

Поскольку ослабление озонового экрана чрезвычайно опасно для всей наземной биоты и для здоровья людей, эти данные привлекли пристальное внимание ученых, а затем и экологически озабоченных кругов общества. Был высказан ряд гипотез о причинах нарушения озонового слоя. Большинство специалистов склоняется к мнению о техногенном происхождении резкого увеличения озоновых дыр. Наиболее обосновано представление, согласно которому главной причиной является попадание в верхние слои атмосферы техногенного хлора и фтора, а также других атомов и радикалов, способных чрезвычайно активно присоединять атомарный кислород, тем самым конкурируя с реакцией: О + Ог -» Оз (см. п. 3.5).[ …]

Особый интерес вызывает состояние летней мезопаузы с достаточно низкими значениями температуры, которые сохраняют постоянными свои значения в течение рассматриваемого интервала лет, не отображая при этом влияния среднегодового многолетнего охлаждения средней и верхней атмосферы. Вероятно, причиной такого поведения является сложное сочетание достаточно большого количества фотохимических, радиационных и динамических процессов, в результате которых и обеспечивается наблюдаемая стабилизация теплового режима в этой области высот атмосферы в летнее время. Например, меридиональная циркуляция в летний период в северном полушарии, участвующая в переносе паров воды в верхние слои атмосферы [21], приводит к увеличению ее концентрации в верхней мезосфере почти на полтора порядка [24]. По-видимому, это может послужить важным фактором, объясняющим обнаруженное явление.[ …]

Известно, что растворяющая способность воды определяет все многообразие типов природных вод. Источником пресных вод на Земле являются водяные пары, образующиеся при испарении океанических вод в южных широтах. Атмосферные осадки, образующиеся при конденсации водяных паров в верхних слоях атмосферы, минерализуются в атмосфере лишь в незначительной степени (солесодержание 10—20 мг/л) в результате растворения ими частиц пыли и ряда газов, в частности сернистого ангидрида, образующегося при сжигании серусодержащего топлива. Лишь немногим выше (30—40 мг/л) минерализация вод поверхностного стока, обусловленная их контактом с поверхностью почв (бикарбонаты кальция и магния, сульфаты и хлориды натрия и калия). Существенно выше минерализация вод внутрипочвенного стока, величина которой (в среднем 50—60 мг/л) и конкретный состав (преобладающие ионы) зависят от конкретных почвообразующих минералов. Еще более индивидуален (обусловлен природой грунтов и пород) состав грунтовых и подземных вод и их суммарная минерализация, доходящая до нескольких граммов на литр [1].[ …]

В этом балансе азот, хлор, кислород, водород и другие компоненты участвуют как бы в виде катализаторов, не меняя своего «содержания», поэтому процессы, приводящие к их накоплению в стратосфере или удалению из нее, существенно сказываются на содержании озона. В связи с этим попадание в верхние слои атмосферы даже относительно небольших количеств таких веществ может устойчиво и долгосрочно влиять на установившийся баланс, связанный с образованием и разрушением озона.[ …]

С увеличением выооты трубы максимальная концентрация вредного вещества уменьшается обратно пропорционально квадрату высоты тпубы ¿согласно формуле расчета). Однако о увеличением выооты труб возрастает район распространения вредных вещеотв, выбрасываемых из разных труб. При высоте труб 300 и болев метров вещества перенооятоя потоками ветра б верхних слоях атмосферы на большие расстояния. Известен факт загрязнения в Скандинавии выбросами вредных веществ из высоких труб промышленных предприятий ¿РГ.[ …]

Изложенные данные показывают, какое важное значение имеет атмосферный воздух, т. е. тазовая оболочка Земли, для создания нормальных условий жизни на нашей планете. Из •сказанного следует, что атмосферный воздух, является источником кислорода для человека и животных, принимает другие газы, образующиеся в процессе обмена веществ. Верхние слои атмосферы защищают землю от губительной для живых существ коротковолновой- и корпускулярной радиации солнца и от космических лучей. Атмосферная вода в виде облаков играет важную роль в защите Земли от чрезмерного охлаждения: выпадая в виде осадков, обеспечивает развитие растительности и дает начало поверхностным и грунтовым водам. В атмосфере происходит комплекс мете-«рологических явлений, составляющих погоду, которая оказывает влияние на жизнь растений, животных и человека, а также на почвенный покров Земли.[ …]

Среди космических лучей различают первичные и вторичные. Первичные космические лучи приходят к Земле из Галактик (галактические высокоэнергетические) и от Солнца (солнечные умеренных энергий), имеющие связь с активностью Солнца. Основной состав космических лучей протоны, незначительно альфа-частицы и тяжелые ядра. Взаимодействуя в верхних слоях атмосферы с ядрами встречных атомов, космические лучи порождают космогенные радионуклиды — тритий или водород-3, углерод-14, бериллий-7, натрий-22 и вторичные частицы: электроны, фотоны, мезоны, нейтроны и др., пронизывающие атмосферу. Часть излучений, проникающая через атмосферу, ослабляется воздухом, и их воздействие зависит от высоты над уровнем моря. В самолете на высоте 10 ООО м гамма-излучение составляет около 100 мкр/ч. Такое же значение гамма-излучения фиксируется на горных вершинах типа Эльбруса. Интенсивность галактических космических лучей также зависит от широты — на экваторе наименьшая, наибольшая — в высоких широтах. Различие определяется особенностями магнитного поля Земли.[ …]

В ближайшем будущем указанные средства удаления фрагментов космического мусора с орбит представляются проблематичными и нецелесообразными в связи с большими энергетическими и экономическими затратами и нуждаются в дальнейших проработках. Пока же очищение космоса происходит только частично естественным путем — торможением обломков в верхних слоях атмосферы и в значительной мере зависит от цикла солнечной активности, под влиянием которой атмосфера Земли подвержена большой флуктуации по высоте и тем самым расширению сферы своего воздействия на орбитальные фрагменты.[ …]

Солнечная радиация, имеющая серьезное значение для фотохимических реакций, протекающих вблизи поверхности земли, имеет длину волн в пределах от 8000 до 2900 А. Интенсивность излучения относительно велика для волн с длиной выше 3150 А; ниже 3000 А его интенсивность резко снижается. Это исключает возможность протекания таких реакций на больших высотах, в верхние слоях атмосферы. Таким образом, только фотохимические процессы в газовой фазе, которые могут протекать в нижних слоях атмосферы, происходят с участием загрязнителей, являющихся результатом деятельности человека (если не учитывать их природных источников — вулканов и лесных пожаров). Вещества, содержание которых в атмосфере мало, должны обладать высокой удельной адсорбционной способностью по отношению к волнам указанной длины для того, чтобы служить основным реагентом. С другой стороны, вещества, присутствующие в воздухе в больших количествах, могут являться основными фотохимическими реагентами при слабом поглощении ими лучистой энергии.[ …]

В течение первых двух периодов этой эры — кембрийского, длительностью 70 млн. лет, и ордовика, длительностью около 60 млн. лет, жизнь развивалась в море, постепенно проникая в пресные воды. В ордовике появился и высший тип животных — позвоночные, которые были представлены дальними родственниками современных круглоротых — миног и миксин — панцирными бесчелю-стнымц. К концу ордовика в результате газообмена между атмосферой и богатым жизнью океаном в верхних слоях атмосферы накопилось достаточно кислорода, чтобы образовался озоновый экран. В следующем, силурийском периоде (начало — 425 млн. лет назад, продолжительность — 30 млн. лет) в морях и пресных водах появились челюстноротые позвоночные — хрящевые (их современные представители — акулы и скаты) и костные рыбы, среди которых было много активных хищников. Но главным событием силура стал выход жизни на сушу.[ …]

Чрезвычайную опасность для биосферы представляют аварийные газовые выбросы. Разрывы газопроводов, транспортирующих серо-водородсодержащее сырье, по своим отрицательным последствиям, относятся к числу самых опасных источников аварийных газовых выбросов. Наиболее важным в аварийной ситуации является немедленный поджиг выделяющихся токсичных продуктов с целью превращения их в менее токсичные окислы серы. Кроме, того, воз-никавдие при горении нагретые продукты сгорания за счет меньшей плотности окру кающей среда поднимаются в верхние слои атмосферы и рассеиваются до безопасных концентраций. В ШШИГипрогазе разработано несколько вариантов систем- обнаружения и поджига газовой смеси.[ …]

В окружающей нас природе вода находится в постоянном движении — и это лишь один из многих естественных круговоротов веществ в природе. Говоря «движение» мы имеемввиду не только движение воды как физического тела (течение), не только перемещение ее в пространстве, но, прежде всего, — переход воды из одного физического состояние в другое. На рисунке 1 вы можете видеть как происходит круговорот воды. На поверхности озер, рек и морей вода под влиянием энергии солнечных лучей превращается в водяной пар — этот процесс называется испарением. Таким же образом вода испаряется с поверхности снежного и ледового покрова, с листьев растений и с тел животных и человека. Водяной пар с более теплыми потоками воздуха поднимается в верхние слои атмосферы, где постепенно охлаждается и вновь превращается в жидкость или переходит в твердое состояние — этот процесс носит название конденсации. Одновременно вода перемещается с движением воздушных масс в атмосфере (ветрами). Из образовавшихся капель воды и ледяных кристаллов ф ормируются облака, из которых, в конце концов, на землю выпадает дождь или снег. Вернувшаяся на землю в виде атмосферных осадков вода стекает по склонам и собирается в ручьях и реках, которые текут в озера, моря и океаны. Часть воды просачивается через почву и горные породы, достигает подземных и грунтовых вод, которые тоже, как правило, имеют сток в реки и другие водоемы. Таким образом, круг замыкается и может повторяться в природе бесконечно.[ …]

ДИСТАНЦИОННОЕ ИССЛЕДОВАНИЕ ЭКОСИСТЕМЫ -получение информации о природных экосистемах бесконтактными (телеметрическими) методами, обычно с помощью самолетов, спутников и пилотируемых космических кораблей. Объявление 1992 г. Международным годом космоса определило актуальность космических исследований е целью оценки глобальных изменений окружающей среды под воздействием антропогенных факторов. Для этих целей используются различные зарубежные природо-ресурсные спутники; а также наши системы (“Космос”, “Метеор”, “Ресурс” и др.). Задача изучения Земли как целостной природной системы может быть решена только на основе широкого применения космических средств наблюдений. Важное значение имеют предстоящие функционирование природно-ресурсного модуля орбитальной станции “Мир”, разработки (совместно с Францией) по измерению радиационного баланса Земли и зондирования атмосферы, исследования (совместно с США) слоя озона и верхних слоев атмосферы и т.д.[ …]

Источник: ru-ecology.info

Из чего состоит атмосфера Земли

Оказывается, атмосфера планеты Земля возникла благодаря двум факторам:

  • падения космических объектов на поверхность нашей планеты. А точнее испарение веществ, из которых состоят эти тела;
  • дегазация земной мантии. Проще говоря, газовые выделения, которые происходят при извержениях вулканов.

Однако, важную роль сыграло наличие воды, флоры и фауны на планете. Потому что всё это привело к появлению биосферы, а также изменению атмосферы.
По данным учёных, в состав атмосферы входят газы и разные примеси. Например, такие, как пыль, частицы воды, кристаллы льда, морские соли и продукты горения.

Атмосфера Земли и её строение

Безусловно, что окружающая нас газовая сфера является не просто тонким слоем воды и воздуха планеты. Это некое облачное одеяло. Оно укрывает и защищает нас от воздействия сил космоса. На данный момент, выделили определённые слои, из которых состоит атмосфера Земли. Ниже рассмотрим их подробнее.

Тропосфера

Это основной, к тому же, нижний слой воздушной оболочки. Вдобавок, в его составе более 80% общей массы воздуха, и примерно 90% всего водяного пара, который есть во всей атмосфере. С учётом географической широты верхняя граница данной окружной части может располагаться на высоте от 8 до 18 км.
Интересно, что в тропосфере ярко выражены конвекция и турбулентность. Более того, именно в этой части происходит образование облаков, создание циклонов и антициклонов. Также учёные отметили характерную особенность данного атмосферного слоя: чем выше — тем меньше температура воздуха.
Между прочим, нижняя зона тропосферы является пограничным слоем. По толщине он примерно 1-2 км. Как оказалось, он тесно связан с поверхностью нашей планеты. Действительно, в нём свойства и состояние земной сферы оказывают влияние на всю окружающую оболочку.

Тропосфера
Тропосфера

Тропопауза

Так называют переходную область между тропосферой и стратосферой. Проще говоря, плавное перевоплощение от одного к другому. Интересно, что здесь отмечается приостановка понижения температуры воздуха с повышением высоты.

Стратосфера как область атмосферы Земли

Данный атмосферный участок находится на высоте от 11 до 50 км. Важно, что именно тут лежит озоновый слой. А он, как известно, оберегает нас от ультрафиолетового излучения.
Сратосфера составляет примерно 20% общей массы земной оболочки.
Характерной особенностью является то, что в нижней части (11-25 км) наблюдается небольшое изменение температуры, а в верхней (25-40 км), наоборот, её активное повышение. К слову сказать, верхнюю часть называют областью инверсии.

Стратосфера
Стратосфера

Стратопауза

Что примечательно, на уровне 40 км температура равняется 00С, и сохраняется до 55 км. Эта территория носит название стратопауза. Между прочим, она представляет край стратосферы, и переход от неё к мезосфере.

Мезосфера

Собственно, она берёт своё начало на уровне 50 км. А верхняя граница её располагается на 80-90 км. По данным учёных, температура в мезосфере снижается с повышением высоты. Однако здесь протекает лучистый теплообмен. Кроме того, сложные фотохимические процессы порождают свечение атмосферы Земли.
Доля мезосферы относительно общей массы составляет не больше 0,3%.

Мезосферные серебристые облака
Мезосферные серебристые облака

Мезопауза

Это переходный участок от мезосферы до термосферы. Стоит отметить, что температурный фон минимальный (примерно -90°С).

Линия Кармана

На самом деле, это точка вершины над уровнем моря. К тому же, её принято принимать за границу участка от атмосферы Земли до самого космоса. Установлено, что линия Кармана лежит на высоте 100 км от уровня моря.

Линия кармана
Линия кармана

Атмосфера Земли и её термосфера

Можно сказать, что она является самым верхней границей воздушной зоны планеты (приблизительно 800 км). Но температура всей области разная. Например, до 200-300 км наблюдается её повышение до 1500 К, а после держится в одном значении.

Полярное сияние из космоса
Полярное сияние из космоса

Интересно, что на этом участке отмечают полярные сияния. По всей вероятности они появляются в результате ионизации воздуха. Которые, в свою очередь, возникают под действием радиации Солнца и космического излучения. Между прочим, главные и основные области ионосферы располагаются как раз здесь.
Кроме того, на высоте выше 300 км присутствует большое количество атомарного кислорода.
К удивлению, верхняя граница термосферы может изменяться в размерах. Это связано, главным образом, с солнечной активностью. Так, к примеру, в момент низкой активности происходит его уменьшение, и наоборот.
От общей атмосферной массы Земли на термосферу приходится чуть меньше 0,05%.

Термопауза

Собственно говоря, это область, которая расположена сверху от термосферы. Здесь наблюдается небольшое поглощение излучения Солнца. Притом установлено, что температура остаётся неизменной.

Экзосфера

По-другому её также называют сферой рассеяния. Более того, она является внешней частью термосферы. В данной зоне в вышей степени разреженный газ. По этой причине происходит утечка его элементов в космос.
На уровне 2000-3000 км экзосфера медленно сливается с межпланетной территорией. Поэтому часто этот участок называют ближнекосмическим вакуумом. В нём пространство заполнено редкими частицами газа, в основном атомами водорода.

Спутники системы GPS и ГЛОНАСС находятся в экзосфере
Спутники системы GPS и ГЛОНАСС находятся в экзосфере

Из чего ещё состоит атмосфера Земли

Помимо территориальных воздушных земельных слоев, различают ионосферу и нейтросферу. Они делятся по электрическим свойствам. Как уже было сказано, ионосфера преимущественно находится в термосфере. И связана она с ионизацией воздуха. Но что такое нейтросфера понятно не всем. Проще говоря, это нижняя часть атмосферного слоя. В ней преобладают незаряженные частицы воздуха Земли.

Прорыв через атмосферу
Прорыв через атмосферу

Более того, в окружающей нас воздушной оболочке, учёные выделили две области:
1) Гетеросфера — участок, где силы гравитации влияют на газы. Таким образом происходит их небольшое перемешивание. По этой причине состав гетеросферы переменный.
2) Гомосфера — область под гетеросферой, где отмечают сильно перемешанные газы. Поэтому состав однородный.
Вдобавок существует граница между этими зонами. Её называют турбопаузой. Её территория простирается на высоте 120 км.

Как видно, атмосфера планеты Земля довольно интересная по своей структуре. Хотя нельзя сказать, что прямо сложная. По всей вероятности, мы её довольно хорошо изучили. Но Вселенная и природа всегда преподносят нам сюрпризы.

Источник: kosmosgid.ru

Общее

Верхние слои атмосферыАтмосфера имеет четко выраженные слои воздуха. Слои воздуха отличаются между собой температурой, разностью газов и их плотностью и давлением. Нужно отметить, что слои стратосфера и тропосфера защищают Землю от солнечной радиации. В высших слоях живой организм может получить смертельную дозу ультрафиолетового солнечного спектра. Для быстрого перехода к нужному слою атмосферы, нажмите на соответствующий слой:

  • Тропосфера
  • Стратосфера
  • Мезосфера
  • Линия кармана
  • Термосфера
  • Экзосфера

Тропосфера — температура, давление, высота

Верхняя граница держится на отметке 8 — 10 км примерно. В умеренных широтах 16 — 18 км, а в полярных 10 — 12 км. Тропосфера — это нижний главный слой атмосферы. В этом слое находится более 80% всей массы атмосферного воздуха и близко 90% всей водяной пары. Именно в тропосфере возникают конвекция и турбулентность, образуются облака, происходят циклоны. Температура понижается с ростом высоты. Градиент: 0,65 °/100 м. Нагретая земля и вода нагревают прилагающий воздух. Нагретый воздух поднимается в верх, охлаждается и образует облака. Температура в верхних границах слоя может достигать — 50/70 °C.

Именно в этом слое происходят изменения климатических погодных условий. В нижнюю границу тропосферы называют приземным, так как он имеет много летучих микроорганизмов и пыли. Скорость ветра увеличивается с увеличением высоты в этом слое.

Тропопауза

Это переходной слой тропосферы к стратосфере. Здесь прекращается зависимость снижения температуры с повышением высоты. Тропопауза — минимальная высота, где вертикальный градиент температуры падает до 0,2°C/100 м. Высота тропопаузы зависит от сильных климатических проявлений, таких как циклоны. Над циклонами высота тропопаузы понижается, а над антициклонами повышается.

Высота слоя стратосферы примерно от 11 до 50 км. Присутствует незначительное изменение температуры на высоте 11 — 25 км. На высоте 25 — 40 км наблюдается инверсия температуры, от 56,5 поднимается до 0,8°C. От 40 км до 55 температура держится на отметке 0°C. Эту область называют — Стратопаузой.

В Стратосфере наблюдают воздействие солнечной радиации на молекулы газа, они диссоциируют на атомы. В этом слое нету почти водяного пара. Современные сверхзвуковые коммерческие самолёты летают на высоте до 20 км из-за стабильных полетных условий. Высотные метеозонды поднимаются на высоту 40 км. Здесь присутствуют устойчивые воздушные течения, скорость их достигает 300 км/ч. Также в этом слое сосредоточен озон, слой который поглощает ультрафиолетовые лучи.

Слой мезосферы начинается примерно на высоте 50 км и заканчивается на отметке 80 — 90 км. Температуры понижается с повышением высоты примерно 0,25-0,3°C/100 м. Основным энергетическим действием здесь является лучистый теплообмен. Сложные фотохимические процессы с участием свободных радикалов (имеет 1 или 2 непарных электронная) т.к. они реализуют свечение атмосферы.

Почти все метеоры сгорают в мезосфере. Ученые назвали эту зону — Игноросферой. Эту зону тяжело исследовать, так как аэродинамическая авиация здесь очень плохая из-за плотности воздуха, которая здесь в 1000 раз меньше чем на Земле. А для запуска искусственных спутников плотность еще очень высокая. Исследования проводят с помощью метеорологических ракет, но это извращенность. Мезопауза переходной слой между мезосферой и термосферой. Имеет температуру минимум -90°C.

Линию кармана называют границей между атмосферой Земли и космосом. Согласно международной авиационной федерацией (ФАИ) высота этой границы — 100 км. Такое определения дали в честь американского ученого Теодора Фон Кармана. Он определил, что примерно на этой высоте плотность атмосферы настолько мала, что аэродинамическая авиация здесь становится невозможная, так как скорость летательного устройства должна быть большей первой космической скорости. На такой высоте теряет смысл понятие звуковой барьер. Здесь управлять летательным аппаратом можно лишь за счет реактивных сил.

Верхняя граница этого слоя примерно 800 км. Температура растёт примерно до высоты 300 км где достигает порядка 1500 К. Выше температура остается неизменной. В этом слое происходит полярное сияние — происходит в следствии воздействия солнечной радиации на воздуха. Также этот процесс называют ионизацией атмосферного кислорода.

Из-за малой разряженности воздуха полёты выше линии Кармана реализуемы только по баллистических траекториях. Все пилотируемые орбитальные полеты (кроме полетов на Луну) происходят в этом слое атмосферы.

Высота экзосферы выше 700 км. Здесь газ сильно разрежён,и происходит процесс диссипации — утечка частиц в межпланетное пространство. Скорость таких частиц может достигать 11,2 км/сек. Рост солнечной активности приводит к расширению толщины этого слоя.

Источник: terasfera.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.