Состав земной атмосферы


Земная атмосфера сформирована несколькими слоями газов, которые окружают Землю из-за эффектов гравитационного поля.

Каждый слой имеет определённый состав газов и все организованы в соответствии с их плотностью. Более плотные газы притягиваются ближе к поверхности Земли, в то время как другие (менее плотные) находятся на более дальнем расстоянии от планеты.

Из-за различных характеристик, которыми обладают газы, слои атмосферы имеют свои особенности и играют определённую роль в своих взаимодействиях с Землёй.

Пять слоёв, которые составляют атмосферу Земли:

  1. Тропосфера;
  2. Стратосфера;
  3. Мезосфера;
  4. Термосфера;
  5. Экзосфера.

Изображение расстояний каждого слоя от Земли

Основные элементы атмосферы

Тропосфера представляет собой слой, в котором наблюдаются сильные вертикальные и горизонтальные движения, именно здесь формируется погода, осадочные явления, климатические условия. Она простирается на 7-8 километров от поверхности планеты почти повсеместно, за исключением полярных регионов (там – до 15 км). В тропосфере наблюдается постепенное понижение температуры, приблизительно на 6,4°С с каждым километром высоты. Этот показатель может отличаться для разных широт и времен года.


Состав атмосферы Земли в этой части представлен следующими элементами и их процентными долями:

— азот – около 78 процентов;

— кислород – почти 21 процент;

— аргон – около одного процента;

— углекислый газ – менее 0.05 %.

состав первичной атмосферы земли

Из чего ещё состоит атмосфера Земли

Помимо территориальных воздушных земельных слоев, различают ионосферу и нейтросферу. Они делятся по электрическим свойствам. Как уже было сказано, ионосфера преимущественно находится в термосфере. И связана она с ионизацией воздуха. Но что такое нейтросфера понятно не всем. Проще говоря, это нижняя часть атмосферного слоя. В ней преобладают незаряженные частицы воздуха Земли.

Прорыв через атмосферу
Прорыв через атмосферу


Более того, в окружающей нас воздушной оболочке, учёные выделили две области: 1) Гетеросфера — участок, где силы гравитации влияют на газы. Таким образом происходит их небольшое перемешивание. По этой причине состав гетеросферы переменный. 2) Гомосфера — область под гетеросферой, где отмечают сильно перемешанные газы. Поэтому состав однородный. Вдобавок существует граница между этими зонами. Её называют турбопаузой. Её территория простирается на высоте 120 км.

Как видно, атмосфера планеты Земля довольно интересная по своей структуре. Хотя нельзя сказать, что прямо сложная. По всей вероятности, мы её довольно хорошо изучили. Но Вселенная и природа всегда преподносят нам сюрпризы.

Единый состав до высоты 90 километров

Кроме того, здесь можно найти пыль, капельки воды, водяной пар, продукты горения, кристаллики льда, морские соли, множество аэрозольных частиц и др. Такой состав атмосферы Земли наблюдается приблизительно до девяноста километров высоты, поэтому воздух примерно одинаков по химическому составу, не только в тропосфере, но и в вышележащих слоях. Но там атмосфера имеет принципиально другие физические свойства. Слой же, который имеет общий химический состав, называют гомосферой.

Какие элементы еще входят в состав атмосферы Земли? В процентах (по объему, в сухом воздухе) здесь представлены такие газы как криптон (около 1.14 х 10-4), ксенон (8.7 х 10-7), водород (5.0 х 10-5), метан (около 1.7 х 10-4), закись азота (5.0 х 10-5) и др. В процентах по массе из перечисленных компонентов больше всего закиси азота и водорода, далее следует гелий, криптон и пр.

Физические свойства разных атмосферных слоев


Физические свойства тропосферы тесно связаны с ее прилеганием к поверхности планеты. Отсюда отраженное солнечное тепло в форме инфракрасных лучей направляется обратно вверх, включая процессы теплопроводности и конвекции. Именно поэтому с удалением от земной поверхности падает температура. Такое явление наблюдается до высоты стратосферы (11-17 километров), потом температура становится практически неизменной до отметки 34-35 км, и далее идет опять рост температур до высот в 50 километров (верхняя граница стратосферы). Между стратосферой и тропосферой есть тонкий промежуточный слой тропопаузы (до 1-2 км), где наблюдаются постоянные температуры над экватором – около минус 70°С и ниже. Над полюсами же тропопауза «прогревается» летом до минус 45°С, зимой температуры здесь колеблются около отметки -65°С.

Газовый состав атмосферы Земли включает в себя такой важный элемент, как озон. Его относительно немного у поверхности (десять в минус шестой степени от процента), так как газ образуется под воздействием солнечных лучей из атомарного кислорода в верхних частях атмосферы. В частности, больше всего озона на высоте около 25 км, а весь «озоновый экран» расположен в областях от 7-8 км в области полюсов, от 18 км на экваторе и до пятидесяти километров в общем над поверхностью планеты.

Облака


Вода на Земле существует не только в необъятном океане и многочисленных реках. Около 5,2 ×1015 килограмм воды находится в атмосфере. Она присутствует практически везде — доля пара в воздухе колеблется от 0,1% до 2,5% объема в зависимости от температуры и местоположения. Однако больше всего воды собрано в облаках, где она хранится не только в виде газа, но и в маленьких капельках и ледяных кристаллах. Концентрация воды в тучах достигает 10г/м3 — а так как облака достигают объема в несколько кубических километров, масса воды в них исчисляется десятками и сотнями тонн.

Состав земной атмосферы

Разнообразные классы облаков

Облака — это самое заметное образование нашей Земли; они видны даже с Луны, где очертания континентов размываются перед невооруженным глазом. И это не странно — ведь тучами постоянно покрыто больше 50% Земли!

В теплообмене Земли облака играют невероятно важную роль. Зимой они захватывают солнечные лучи, повышая температуру под собой за счет парникового эффекта, а летом экранируют громадную энергию Солнца. Также облака уравновешивают перепады температуры между днем и ночью. К слову, именно из-за их отсутствия пустыни так сильно остывают ночью — все накопленное песком и скалами тепло беспрепятственно улетает ввысь, когда в других регионах его удерживают тучи.


Преобладающее большинство туч формируются у поверхности Земли, в тропосфере, однако в своем дальнейшем развитии они принимают самые разнообразные формы и свойства. Их разделение весьма полезно — появление туч различных видов может не только помочь предсказывать погоду, но и определять наличие примесей в воздухе! Давайте рассмотрим основные типы облаков подробнее.

Состав земной атмосферы

Облако из космоса

Облака нижнего яруса

Тучи, которые опускаются ниже всего над землей, относят к облакам нижнего яруса. Им характерна высокая однородность и низкая масса — когда они опускаются на землю, ученые-метеорологи не отделяют их от обычного тумана. Тем не менее разница между ними есть — одни просто заслоняют небо, а другие могут разразиться большими дождями и снегопадами.

  • К тучам, способным дать сильные осадки, относятся слоисто-дождевые облака. Они самые большие среди туч нижнего яруса: их толщина достигает нескольких километров, а линейные измерения превышают тысячи километров. Они представляют собой однородную серую массу — взгляните на небо во время продолжительного дождя, и вы наверняка увидите слоисто-дождевые облака.

  • Другой вид облаков нижнего яруса — это слоисто-кучевые облака, поднимающиеся над землей на 600–1500 метров. Они представляют собой группы из сотен серо-белых туч, разделенных небольшими просветами. Такие облака мы обычно видим в дни переменной облачности. С них редко идет дождь или снег.
  • Последний вид нижних облаков — это обычные слоистые облака; именно они застилают небо в пасмурные дни, когда с неба пускается мелкая морось. Они очень тонкие и низкие — высота слоистых облаков в максимуме достигает 400–500 метров. Их структура очень напоминает строение тумана — опускаясь ночью к самой земле, они часто создают густую утреннюю дымку.

Состав земной атмосферы

Слоисто-кучевые облака

Облака вертикального развития

У туч нижнего яруса есть старшие братья — облака вертикального развития. Хотя их нижняя граница пролегает на небольшой высоте в 800–2000 километров, облака вертикального развития серьезно устремляются вверх — их толщина может достигать 12–14 километров, что подталкивает их верхний предел к границам тропосферы. Еще такие облака называют конвективными: из-за больших размеров вода в них приобретает разную температуру, что порождает конвекцию — процесс перемещения горячих масс наверх, и холодных — вниз. Поэтому в облаках вертикального развития одновременно существуют водный пар, мелкие капельки, снежинки и даже целые кристаллы льда.


  • Основным типом вертикальных облаков являются кучевые облака — громадные белые тучи, напоминающие рваные куски ваты или айсберги. Для их существования необходима высокая температура воздуха — поэтому в средней полосе России они появляются только летом и тают к ночи. Их толщина достигает нескольких километров.
  • Однако когда кучевые облака имеют возможность собраться вместе, они создают куда более грандиозную форму — кучево-дождевые облака. Именно с них идут сильные ливни, град и грозы летом. Существуют они только несколько часов, но при этом разрастаются ввысь до 15 километров — верхняя их часть достигает температуры –10°C и состоит из кристалликов льда.На верхушках самых больших кучево-дождевых туч формируются «наковальни» — плоские области, напоминающие гриб или перевернутый утюг. Это происходит на тех участках, где облако достигает границы стратосферы — физика не позволяет распространяться дальше, из-за чего кучево-дождевая туча расползается вдоль предела высоты.

Состав земной атмосферы

Большое кучево-дождевое облако


  • Интересный факт — мощные кучево-дождевые облака формируются в местах извержений вулканов, ударов метеоритов и ядерных взрывов. Эти тучи являются самыми большими — их границы достигают даже стратосферы, выбираясь на высоту 16 километров. Будучи насыщенными испаренной водой и микрочастицами, они извергают мощные грозовые ливни — в большинстве случаев этого достаточно, чтобы потушить связанные с катаклизмом возгорания. Вот такой вот природный пожарный

Облака среднего яруса

В промежуточной части тропосферы (на высоте от 2–7 километров в средних широтах) находятся облака среднего яруса. Им свойственны большие площади — на них меньше влияют восходящие потоки от земной поверхности и неровности ландшафта — и небольшая толщина в несколько сот метров. Это те облака, которые «наматываются» вокруг острых пиков гор и зависают возле них.

Сами облака среднего яруса делятся на два основных типа — высокослоистые и высококучевые.

  • Высокослоистые облака — это одна из составляющих сложных атмосферных масс. Они представляют собой однородную, серовато-синюю пелену, через которую видны Солнце и Луна — хотя протяженность высокослоистых облаков составляет тысячи километров, их толщина составляет всего несколько километров. Серая плотная пелена, которая видна из иллюминатора самолета, летящего на большой высоте — это именно высокослоистые облака. Часто из них идут длительные дожди или снег.

Состав земной атмосферы

Высококучевые и высокослоистые облака

  • Высококучевые облака, напоминающие мелкие куски рваной ваты или тонкие параллельные полосы, встречаются в теплую пору года — они образуются при поднятии теплых воздушных масс на высоту 2–6 километров. Высококучевые облака служат верным индикатором грядущей перемены погоды и приближения дождя — создать их может не только естественная конвекция атмосферы, но и наступления холодных воздушных масс. С них редко идет дождь — однако тучи могут сбиться вместе и создать одно большое дождевое облако.

К слову о тучах возле гор — на фотографиях (а, может, и вживую) вы наверняка не раз видели круглые облака, напоминающие ватные диски, которые зависают слоями над горной вершиной. Дело в том, что облака среднего яруса часто бывают лентикулярными или линзовидными — разделенными на несколько параллельных слоев. Их создают воздушные волны, образующиеся при обтекании ветром крутых пиков. Линзовидные тучи также особенны тем, что висят на месте даже при самом сильном ветре. Это делает возможным их природа — поскольку такие облака создаются в местах контакта нескольких воздушных потоков, они находятся в относительно стабильной позиции.


Состав земной атмосферы

Лентикулярные облака над горой Фудзи, Япония

Облака верхнего яруса

Последний уровень обычных туч, которые поднимаются до нижних пределов стратосферы, называется верхним ярусом. Высота таких облаков достигает 6–13 километров — там очень холодно, и потому облака на верхнем ярусе состоят из мелких льдинок. Из-за их волокнистой растянутой формы, напоминающей перья, высокие облака также называются перистыми — хотя причуды атмосферы часто придают им форму когтей, хлопьев и даже рыбьих скелетов. Осадки, которые образуются с них, никогда не достигают земли — но само присутствие перистых облаков служит древним способом предсказывать погоду.

  • Чисто-перистые облака являются самыми протяженными среди туч верхнего яруса — длина отдельного волокна может достигать десятка километров. Так как кристаллы льда в тучах достаточно большие, чтобы ощущать на себе притяжение Земли, перистые облака «падают» целыми каскадами — расстояние между верхней и нижней точкой отдельно взятого облака может достигать 3-4 километров! По сути, перистые тучи — это громадные «ледопады». Именно различия в форме кристаллов воды создают их волокнистую, потокообразную форму.
  • В этом классе попадаются и практически невидимые облака — перисто-слоистые облака. Они образуются тогда, когда большие массы приповерхностного воздуха поднимаются ввысь — на большой высоте их влажности достаточно для формирования облака. Когда сквозь них просвечивает Солнце или Луна, появляется гало — сияющий радужный диск из рассеянных лучей.

Состав земной атмосферы

Перистые облака

Серебристые облака

В отдельный класс стоит выделить серебристые облака — самые высокие тучи на Земле. Они забираются на высоту 80 километров, что даже выше стратосферы! Кроме того, они имеют необычный состав — в отличие от других облаков, они состоят из метеоритной пыли и метана, а не воды. Эти тучи видны только после заката или перед рассветом — лучи Солнца, проникающие из-за горизонта, подсвечивают серебристые облака, которые в течение дня остаются невидимыми на высоте.

Серебристые облака представляют собой невероятно красивое зрелище — однако чтобы увидеть их в Северном полушарии, нужны особые условия. А еще их загадку было не так просто разгадать — ученые в бессилии отказывались в них верить, объявляя серебристые тучи оптической иллюзией. Посмотреть на необычные облака и узнать о их секретах вы можете из нашей специальной статьи.

Состав земной атмосферы

Серебристые облака

Атмосфера защищает от солнечной радиации

Состав воздуха атмосферы Земли играет очень важную роль в сохранении жизни, так как отдельные химические элементы и композиции удачно ограничивают доступ солнечной радиации к земной поверхности и живущим на ней людям, животным, растениям. Например, молекулы водяного пара эффективно поглощают почти все диапазоны инфракрасного излучения, за исключением длин в интервале от 8 до 13 мкм. Озон же поглощает ультрафиолет вплоть до длины волн в 3100 А. Без его тонкого слоя (составит всего в среднем 3 мм, если его расположить на поверхности планеты) обитаемы могут быть только воды на глубине более 10 метров и подземные пещеры, куда не доходит солнечная радиация.

Стратосфера и Стратопауза

Высота слоя стратосферы примерно от 11 до 50 км. Присутствует незначительное изменение температуры на высоте 11 — 25 км. На высоте 25 — 40 км наблюдается инверсия

температуры, от 56,5 поднимается до 0,8°C. От 40 км до 55 температура держится на отметке 0°C. Эту область называют —
Стратопаузой
.

В Стратосфере наблюдают воздействие солнечной радиации на молекулы газа, они диссоциируют на атомы. В этом слое нету почти водяного пара. Современные сверхзвуковые коммерческие самолёты летают на высоте до 20 км из-за стабильных полетных условий. Высотные метеозонды поднимаются на высоту 40 км. Здесь присутствуют устойчивые воздушные течения, скорость их достигает 300 км/ч. Также в этом слое сосредоточен озон

, слой который поглощает ультрафиолетовые лучи.

Ноль по Цельсию в стратопаузе

Между двумя следующими уровнями атмосферы, стратосферой и мезосферой, существует примечательный слой – стратопауза. Он приблизительно соответствует высоте озонных максимумов и здесь наблюдается относительно комфортная для человека температура – около 0°С. Выше стратопаузы, в мезосфере (начинается где-то на высоте 50 км и заканчивается на высоте 80-90 км), наблюдается опять же падение температур с увеличением расстояния от поверхности Земли (до минус 70-80°С). В мезосфере обычно полностью сгорают метеоры.

газовый состав атмосферы земли

Тропосфера и тропопауза

Тропосфера — температура, давление, высота

Верхняя граница держится на отметке 8 — 10 км примерно. В умеренных широтах 16 — 18 км, а в полярных 10 — 12 км. Тропосфера

— это нижний главный слой атмосферы. В этом слое находится более 80% всей массы атмосферного воздуха и близко 90% всей водяной пары. Именно в тропосфере возникают конвекция и турбулентность, образуются облака, происходят циклоны.
Температура
понижается с ростом высоты. Градиент: 0,65 °/100 м. Нагретая земля и вода нагревают прилагающий воздух. Нагретый воздух поднимается в верх, охлаждается и образует облака. Температура в верхних границах слоя может достигать — 50/70 °C.

Именно в этом слое происходят изменения климатических погодных условий. В нижнюю границу тропосферы называют приземным

, так как он имеет много летучих микроорганизмов и пыли. Скорость ветра увеличивается с увеличением высоты в этом слое.

Тропопауза

Это переходной слой тропосферы к стратосфере. Здесь прекращается зависимость снижения температуры с повышением высоты. Тропопауза — минимальная высота, где вертикальный градиент температуры падает до 0,2°C/100 м. Высота тропопаузы зависит от сильных климатических проявлений, таких как циклоны. Над циклонами высота тропопаузы понижается, а над антициклонами повышается.

В термосфере — плюс 2000 К!

Химический состав атмосферы Земли в термосфере (начинается после мезопаузы с высот около 85-90 до 800 км) определяет возможность такого явления, как постепенный нагрев слоев весьма разреженного «воздуха» под воздействием солнечного излучения. В этой части «воздушного покрывала» планеты встречаются температуры от 200 до 2000 К, которые получаются в связи с ионизацией кислорода (выше 300 км находится атомарный кислород), а также рекомбинацией атомов кислорода в молекулы, сопровождающейся выделением большого количества тепла. Термосфера – это место возникновения полярных сияний.

Выше термосферы находится экзосфера – внешний слой атмосферы, из которого легкие и быстро перемещающиеся атомы водорода могут уходить в космическое пространство. Химический состав атмосферы Земли здесь представлен больше отдельными атомами кислорода в нижних слоях, атомами гелия в средних, и почти исключительно атомами водорода – в верхних. Здесь господствуют высокие температуры – около 3000 К и отсутствует атмосферное давление.

состав воздуха атмосферы земли

Экзосфера

Экзосфера — это самый большой и крайний внешний слой Земной атмосферы. Он простирается на 600 км, пока плавно не перейдёт в межпланетное пространство. Это делает его толщиной в 10.000 км. Самая дальняя граница экзосферы достигает половины пути до Луны.

Термин «экзосфера» происходит от греческого exo (что значит «внешний»), обозначает тот факт, что это последний атмосферный слой перед космическим вакуумом.

Состав экзосферы

Частицы в экзосфере чрезвычайно далеки друг от друга и поэтому не классифицируются как газы, потому что плотность слишком низкая. Одна частица может пройти сотни километров до столкновения с другой. Они также не считаются плазмой, так как электрически они не заряжены.

В нижних областях экзосферы можно найти водород, гелий, углекислый газ и атомарный кислород, которые остаются минимально притянутыми к Земле гравитационным полем.

Температура экзосферы

Из-за того, что экзосфера находится почти в вакууме (из-за отсутствия взаимодействия между молекулами), температура в слое постоянная и холодная.

Что встречается в экзосфере?

Некоторые примеры того, что можно найти в экзосфере:

  • космический телескоп Хаббл;
  • спутники.

Как образовалась земная атмосфера?

Но, как уже упоминалось выше, такой состав атмосферы планета имела не всегда. Всего существует три концепции происхождения этого элемента. Первая гипотеза предполагает, что атмосфера была взята в процессе аккреции из протопланетного облака. Однако сегодня эта теория подвергается существенной критике, так как такая первичная атмосфера должна была быть разрушена солнечным «ветром» от светила в нашей планетной системе. Кроме того, предполагается, что летучие элементы не могли удержаться в зоне образования планет по типу земной группы из-за слишком высоких температур.

Состав первичной атмосферы Земли, как предполагает вторая гипотеза, мог быть сформирован за счет активной бомбардировки поверхности астероидами и кометами, которые прибыли из окрестностей Солнечной системы на ранних этапах развития. Подтвердить или опровергнуть эту концепцию достаточно сложно.

химический состав первичной атмосферы земли

Линия Кармана

Линию кармана

называют границей между атмосферой Земли и космосом. Согласно международной авиационной федерацией (ФАИ) высота этой границы — 100 км. Такое определения дали в честь американского ученого Теодора Фон Кармана. Он определил, что примерно на этой высоте плотность атмосферы настолько мала, что аэродинамическая авиация здесь становится невозможная, так как скорость летательного устройства должна быть большей
первой космической скорости
. На такой высоте теряет смысл понятие звуковой барьер. Здесь управлять летательным аппаратом можно лишь за счет реактивных сил.

Эксперимент в ИДГ РАН

Самой правдоподобной представляется третья гипотеза, которая считает, что атмосфера появилась в результате выделения газов из мантии земной коры приблизительно 4 млрд. лет назад. Эту концепцию удалось проверить в ИДГ РАН в ходе эксперимента под названием «Царев 2», когда в вакууме был разогрет образец вещества метеорного происхождения. Тогда было зафиксировано выделение таких газов как Н2, СН4, СО, Н2О, N2 и др. Поэтому ученые справедливо предположили, что химический состав первичной атмосферы Земли включал в себя водяной и углекислый газ, пары фтороводорода (HF), угарного газа (CO), сероводорода (H2S), соединений азота, водород, метан (СН4), пары аммиака (NH3), аргон и др. Водный пар из первичной атмосферы участвовал в образовании гидросферы, углекислый газ оказался в большей мере в связанном состоянии в органических веществах и горных породах, азот перешел в состав современного воздуха, а также опять в осадочные породы и органические вещества.

Состав первичной атмосферы Земли не позволил бы современным людям находиться в ней без дыхательных аппаратов, так как кислорода в требуемых количествах тогда не было. Этот элемент в значительных объемах появился полтора миллиарда лет назад, как полагают, в связи с развитием процесса фотосинтеза у сине-зеленых и других водорослей, которые являются древнейшими обитателями нашей планеты.

строение и состав атмосферы земли

Химический и количественный состав

Газовая оболочка Марса состоит из углекислого газа (его здесь 95%), азота (3%), аргона (примерно 1,5%). Оставшиеся 0,5 процента — это следы водяного пара, кислорода и некоторых других веществ.

Состав земной атмосферы
Источники, благодаря которым на Марсе мог появиться метан. Credit: Aerospaceengineering

Одна из последних находок — метан, обнаруженный тут в сравнительно большом количестве: его выделяется до 270 т ежегодно.

Весь этот объем разрушается примерно за полгода из-за специфических условий в космосе, однако постоянное присутствие метана в марсианской атмосфере наводит на мысль о наличии активного, постоянно действующего его источника.

Этот газ найден в разных районах планеты, а появился он, возможно, в результате следующих процессов:

  • глубинная вулканическая активность;
  • серпентинизация (процесс замещения одних компонентов горных пород другими, более насыщенными влагой);
  • геотермальные;
  • гидротермальная деятельность.

Метан — это побочный продукт жизнедеятельности многих организмов, что дает возможность рассуждать о наличии на Красной планете живых существ.

В атмосфере Марса также рассеяно достаточное количество взвешенных твердых веществ, среди которых преобладают частицы оксида железа, придающего воздуху красноватый цвет. На закате это небесное тело приобретает голубой оттенок. Отвечает за это метан, который рассеивает волны голубой области лучше, чем любой другой цвет.

Минимум кислорода

На то, что состав атмосферы Земли изначально был почти бескислородным, указывает то, что в древнейших (катархейских) породах находят легкоокисляемый, но не окисленный графит (углерод). Впоследствии появились так называемые полосчатые железные руды, которые включали в себя прослойки обогащенных окислов железа, что означает появление на планете мощного источника кислорода в молекулярной форме. Но эти элементы попадались только периодически (возможно, те же водоросли или другие продуценты кислорода появились небольшими островками в бескислородной пустыне), в то время как остальной мир был анаэробным. В пользу последнего говорит то, что легко окисляемый пирит находили в виде гальки, обработанной течением без следов химических реакций. Так как текучие воды не могут быть плохо аэрированными, выработалась точка зрения, что атмосфера до начала кембрия содержала менее одного процента кислорода от сегодняшнего состава.

Революционное изменение состава воздуха

Приблизительно в середине протерозоя (1,8 млрд. лет назад) произошла «кислородная революция», когда мир перешел к аэробному дыханию, в ходе которого из одной молекулы питательного вещества (глюкоза) можно получать 38, а не две (как при анаэробном дыхании) единицы энергии. Состав атмосферы Земли, в части кислорода, стал превышать один процент от современного, стал возникать озоновый слой, защищающий организмы от радиации. Именно от нее «скрывались» под толстыми панцирями, к примеру, такие древние животные, как трилобиты. С тех пор и до нашего времени содержание основного «дыхательного» элемента постепенно и медленно возрастало, обеспечивая многообразие развития форм жизни на планете.

Источник: maginarius.ru

Тропосфера

Тропосфера — это самый плотный слой атмосферы и, следовательно, самый близкий к Земной поверхности. Общая масса атмосферы оценивается в 5х1018 кг, и 75% этого количества находится в тропосфере.

Толщина тропосферы колеблется от 8 км до 14 км, в зависимости от региона Земли. Самые тонкие места (где толщина достигает 8 км) находятся на северном и южном полюсах.

Поскольку это самый нижний слой атмосферы, тропосфера ответственна за жизнь на планете, а также там, где происходят почти все климатические явления. Термин «тропосфера» происходит от греческого «tropos» (означает «изменение»), чтобы отразить динамический характер изменений климата и поведение этого слоя атмосферы.

Область тропосферы, которая ограничивает её конец и начало стратосферы, называется тропопаузой. Тропопауза легко идентифицируется по различным картинам распределения давления и температурам каждого слоя.

Состав тропосферы

По объёму тропосфера состоит из 78,08% азота, 20,95% кислорода, 0,93% аргона и 0,04% углекислого газа. Воздух также состоит из меняющихся процентных показателей водяного пара, который попадает в тропосферу через явление испарения.

Температура тропосферы

Как и давление, температура в тропосфере также уменьшается с увеличением высоты. Это связано с тем, что почва поглощает бóльшую часть солнечной энергии и нагревает нижние уровни тропосферы. Принимая во внимание, что испарение выше в более тёплых областях, водяные пары присутствуют чаще на уровне моря и реже на больших высотах.

Что встречается в тропосфере?

Некоторые примеры того, что можно найти в тропосфере:

  • климат;
  • осадки, такие как: дождь, снег и град;
  • газы, такие как: азот, кислород, аргон и углекислый газ;
  • облака;
  • птицы.

Стратосфера

Стратосфера является вторым по величине слоём атмосферы, а также вторым, ближайшим к Земной поверхности. По оценкам, он содержит около 15% от общей массы атмосферы Земли.

Толщина стратосферы составляет 35 км от тропопаузы, что означает, что она расположена между тропосферой и мезосферой. Термин «стратосфера» происходит от греческого strato (значит «слой») для обозначения того факта, что сама стратосфера подразделяется на другие более тонкие слои.

Слои стратосферы образуются из-за отсутствия климатических явлений, которые смешивают воздух. Таким образом, существует чёткое разделение между холодным и тяжёлым воздухом внизу и тёплым, лёгким воздухом сверху. Таким образом, с точки зрения температуры стратосфера работает точно противоположно тропосфере.

Поскольку эта зона более высокой вертикальной стабильности (без перемещений воздуха), пилоты самолётов, как правило, остаются в начале стратосферы, чтобы избежать турбулентности. Именно на этой высоте самолёты и воздушные шары достигают максимальной эффективности.

Стратосфера также содержит хорошо известный озоновый слой, который поглощает большую часть ультрафиолетового излучения солнца. Без озонового слоя жизнь на Земле, какой мы её знаем, была бы невозможна.

Подобно тропосфере, стратосфера также имеет область, которая ограничивает её конец и показывает начало мезосферы, которая называется стратопауза.

Состав стратосферы

Большинство элементов, найденных на поверхности Земли и в тропосфере, не достигают стратосферы. Вместо этого они обычно:

  • разлагаются в тропосфере;
  • могут быть устранены солнечным светом;
  • могут переноситься на поверхность Земли через дождь или другие осадки.

Из-за инверсии в динамике температуры между тропосферой и стратосферой воздух практически не обменивается между двумя слоями, в результате чего испарения воды существуют в стратосфере только в незначительных количествах. По этой причине в этом слое чрезвычайно редко образование облаков.

Что касается газов, стратосфера образована преимущественно озоном, присутствующим в озоновом слое. Считается, что 90% всего озона в атмосфере находится в этой области. Кроме того, стратосфера содержит элементы, переносимые извержениями вулканов, такие, как оксиды азота, азотная кислота, галогены и т. д.

Температура стратосферы

Температура в стратосфере увеличивается с увеличением высоты, варьируя от -51 ° C в самой низкой точке (тропопауза) до -3 ° C в самой высокой точке (стратопауза).

Что встречается в стратосфере?

Некоторые примеры того, что можно найти в стратосфере:

  • озоновый слой;
  • самолёты и метеозонды;
  • некоторые птицы.

Мезосфера

Мезосфера — это последний атмосферный слой, в котором газы всё ещё смешиваются в воздухе и не организованы их массой. Этот слой считается наукой самым сложным для изучения, поэтому о нём мало подтверждённой информации.

Толщина мезосферы также составляет 35 км от стратопаузы, что означает, что она расположена между стратосферой и термосферой. Термин «мезосфера» происходит от греческого mesos (означает «центр»), так как является третьим среди пяти слоёв Земной атмосферы.

Метеозонды и самолёты не могут достичь так высоко, чтобы достичь мезосферы. В то же время спутники могут вращаться только над ним, таким образом получается, что они не могут должным образом измерять характеристики этого слоя.

Единственный способ изучения мезосферы в наши дни — это использование ракет, которые собирают довольно мало информации в каждой миссии.

Именно в мезосфере происходит сгорание небесных тел, попадающих в Земную атмосферу, что приводит к таким явлениям, как звездопад (метеорные потоки).

Состав мезосферы

Процентное содержание кислорода, азота и углекислого газа в мезосфере, по существу, такое же, как и в слоях ниже. Испарения воды там реже, чем в стратосфере, что, в свою очередь, переносит часть озона в мезосферу.

В мезосфере также есть материал из метеоров, которые испаряются при попадании в атмосферу. Таким образом, мезосфера также состоит из относительно высокой доли железа и других металлов.

Температура мезосферы

Температура в мезосфере уменьшается с увеличением высоты, варьируя от -3° C в самой низкой точке (стратопауза) до -143° C в самой высокой точке (мезопауза — самая холодная область всей Земной атмосферы).

Что встречается в мезосфере?

Некоторые примеры того, что можно найти в стратосфере:

  • метеоры в сгорании;
  • серебристые облака (особый вид облаков, которые светятся ночью).

Термосфера

Термосфера расположена над мезосферой и ниже экзосферы. Толщина этого слоя составляет около 513 км, что намного больше, чем у всех нижних слоёв вместе взятых.

Хотя термосфера считается частью Земной атмосферы, плотность воздуха настолько низкая, что бóльшую часть слоя ошибочно рассматривают как космическое пространство. Эта идея подкрепляется тем фактом, что в слое недостаточно молекул для перемещения звуковых волн.

В термосфере ультрафиолетовое излучение вызывает явления фотоионизации молекул, т. е. образование ионов в результате контакта фотона с атомом. Это явление ответственно за создание ионосферы, расположенной внутри термосферы. Ионосфера играет важную роль в распространении радиоволн в отдалённые районы Земли.

Именно в термосфере спутники вращаются вокруг Международной космической станции (МКС). Кроме того, именно в термосфере происходит северное сияние.

Читайте подробнее про Северное сияние.

Слово «термосфера» происходит от греческого thermos (что значит «тепло»), что отражает тот факт, что температура в этом слое чрезвычайно высока.

Граница между термосферой и экзосферой называется термопаузой.

Состав термосферы

В отличие от слоёв ниже, где смешиваются газы, в термосфере частицы редко сталкиваются, что приводит к равномерному разделению элементов. Кроме этого, большинство молекул в термосфере разрушаются солнечным светом.

Верхние части термосферы состоят из атомарного кислорода, атомарного азота и гелия.

Температура термосферы

Температура в термосфере может варьироваться от 500º C до 2000º C. Это происходит потому, что большая часть солнечного света поглощается в этом слое.

Что встречается в термосфере?

Некоторые примеры того, что можно найти в термосфере:

  • спутники;
  • раньше, многоразовый транспортный космический корабль Спейс шаттл;
  • МКС;
  • северное сияние;
  • ионосфера.

Экзосфера

Экзосфера — это самый большой и крайний внешний слой Земной атмосферы. Он простирается на 600 км, пока плавно не перейдёт в межпланетное пространство. Это делает его толщиной в 10.000 км. Самая дальняя граница экзосферы достигает половины пути до Луны.

Термин «экзосфера» происходит от греческого exo (что значит «внешний»), обозначает тот факт, что это последний атмосферный слой перед космическим вакуумом.

Состав экзосферы

Частицы в экзосфере чрезвычайно далеки друг от друга и поэтому не классифицируются как газы, потому что плотность слишком низкая. Одна частица может пройти сотни километров до столкновения с другой. Они также не считаются плазмой, так как электрически они не заряжены.

В нижних областях экзосферы можно найти водород, гелий, углекислый газ и атомарный кислород, которые остаются минимально притянутыми к Земле гравитационным полем.

Температура экзосферы

Из-за того, что экзосфера находится почти в вакууме (из-за отсутствия взаимодействия между молекулами), температура в слое постоянная и холодная.

Что встречается в экзосфере?

Некоторые примеры того, что можно найти в экзосфере:

  • космический телескоп Хаббл;
  • спутники.

Атмосферы других планет

В Солнечной системе 8 планет и более 160 спутников. Из них, имеют значимые атмосферы:

  • Земля;
  • Венера;
  • Сатурн;
  • Марс;
  • Уран;
  • Юпитер;
  • Нептун;
  • Титан (спутник Сатурна);
  • Плутон (карликовая планета).

Атмосфера Венеры

Атмосфера Венеры составляет около 96% углекислого газа, а температура поверхности около 464° C. Облака из серной кислоты движутся со скоростью примерно 100 метров в секунду.

Источник: www.uznaychtotakoe.ru

Физические свойства

Толщина атмосферы — примерно 120 км от поверхности Земли. Суммарная масса воздуха в атмосфере — (5,1—5,3)·1018 кг. Из них масса сухого воздуха составляет 5,1352 ±0,0003·1018 кг, общая масса водяных паров в среднем равна 1,27·1016 кг.

Молярная масса чистого сухого воздуха составляет 28,966 г/моль, плотность воздуха у поверхности моря приблизительно равна 1,2 кг/м3. Давление при 0 °C на уровне моря составляет 101,325 кПа; критическая температура — −140,7 °C; критическое давление — 3,7 МПа; Cp при 0 °C — 1,0048·103 Дж/(кг·К), Cv — 0,7159·103 Дж/(кг·К) (при 0 °C). Растворимость воздуха в воде (по массе) при 0 °C — 0,0036 %, при 25 °C — 0,0023 %.

За «нормальные условия» у поверхности Земли приняты: плотность 1,2 кг/м3, барометрическое давление 101,35 кПа, температура плюс 20 °C и относительная влажность 50 %. Эти условные показатели имеют чисто инженерное значение.

Строение атмосферы

Тропосфера

Её верхняя граница находится на высоте 8—10 км в полярных, 10—12 км в умеренных и 16—18 км в тропических широтах; зимой ниже, чем летом. Нижний, основной слой атмосферы содержит более 80 % всей массы атмосферного воздуха и около 90 % всего имеющегося в атмосфере водяного пара. В тропосфере сильно развиты турбулентность и конвекция, возникают облака, развиваются циклоны и антициклоны. Температура убывает с ростом высоты со средним вертикальным градиентом 0,65°/100 м

Тропопауза

Переходный слой от тропосферы к стратосфере, слой атмосферы, в котором прекращается снижение температуры с высотой.

Стратосфера

Слой атмосферы, располагающийся на высоте от 11 до 50 км. Характерно незначительное изменение температуры в слое 11—25 км (нижний слой стратосферы) и повышение её в слое 25—40 км от −56,5 до 0,8 °С (верхний слой стратосферы или область инверсии). Достигнув на высоте около 40 км значения около 273 К (почти 0 °C), температура остаётся постоянной до высоты около 55 км. Эта область постоянной температуры называется стратопаузой и является границей между стратосферой и мезосферой.

Стратопауза

Пограничный слой атмосферы между стратосферой и мезосферой. В вертикальном распределении температуры имеет место максимум (около 0 °C).

Мезосфера

Мезосфера начинается на высоте 50 км и простирается до 80—90 км. Температура с высотой понижается со средним вертикальным градиентом (0,25—0,3)°/100 м. Основным энергетическим процессом является лучистый теплообмен. Сложные фотохимические процессы с участием свободных радикалов, колебательно возбуждённых молекул и т. д. обусловливают свечение атмосферы.

Мезопауза

Переходный слой между мезосферой и термосферой. В вертикальном распределении температуры имеет место минимум (около —90 °C).

Линия Кармана

Высота над уровнем моря, которая условно принимается в качестве границы между атмосферой Земли и космосом. В соответствии с определением ФАИ, линия Кармана находится на высоте 100 км над уровнем моря.

Граница атмосферы Земли

Принято считать, что граница атмосферы Земли и ионосферы находится на высоте 118 километров[1]. Это показывает анализ параметров движения высокоэнергетических частиц, перемещающихся в атмосфере и ионосфере.

Термосфера

Верхний предел — около 800 км. Температура растёт до высот 200—300 км, где достигает значений порядка 1500 К, после чего остаётся почти постоянной до больших высот. Под действием ультрафиолетовой и рентгеновской солнечной радиации и космического излучения происходит ионизация воздуха («полярные сияния») — основные области ионосферы лежат внутри термосферы. На высотах свыше 300 км преобладает атомарный кислород. Верхний предел термосферы в значительной степени определяется текущей активностью Солнца. В периоды низкой активности — например, в 2008—2009 гг — происходит заметное уменьшение размеров этого слоя[2].

Термопауза

Область атмосферы прилегающая сверху к термосфере. В этой области поглощение солнечного излучения незначительно и температура фактически не меняется с высотой.

Экзосфера (сфера рассеяния)

Экзосфера — зона рассеяния, внешняя часть термосферы, расположенная выше 700 км. Газ в экзосфере сильно разрежён, и отсюда идёт утечка его частиц в межпланетное пространство (диссипация).

До высоты 100 км атмосфера представляет собой гомогенную хорошо перемешанную смесь газов. В более высоких слоях распределение газов по высоте зависит от их молекулярных масс, концентрация более тяжёлых газов убывает быстрее по мере удаления от поверхности Земли. Вследствие уменьшения плотности газов температура понижается от 0 °C в стратосфере до −110 °C в мезосфере. Однако кинетическая энергия отдельных частиц на высотах 200—250 км соответствует температуре ~150 °C. Выше 200 км наблюдаются значительные флуктуации температуры и плотности газов во времени и пространстве.

На высоте около 2000—3500 км экзосфера постепенно переходит в так называемый ближнекосмический вакуум, который заполнен сильно разрежёнными частицами межпланетного газа, главным образом атомами водорода. Но этот газ представляет собой лишь часть межпланетного вещества. Другую часть составляют пылевидные час­тицы кометного и метеорного происхождения. Кроме чрезвычайно разрежённых пылевидных частиц, в это пространство проникает электромагнитная и корпускулярная радиация солнечного и галактического происхождения.

На долю тропосферы приходится около 80 % массы атмосферы, на долю стратосферы — около 20 %; масса мезосферы — не более 0,3 %, термосферы — менее 0,05 % от общей массы атмосферы. На основании электрических свойств в атмосфере выделяют нейтросферу и ионосферу. В настоящее время считают, что атмосфера простирается до высоты 2000—3000 км.

В зависимости от состава газа в атмосфере выделяют гомосферу и гетеросферу. Гетеросфера — это область, где гравитация оказывает влияние на разделение газов, так как их перемешивание на такой высоте незначительно. Отсюда следует переменный состав гетеросферы. Ниже её лежит хорошо перемешанная, однородная по составу часть атмосферы, называемая гомосфера. Граница между этими слоями называется турбопаузой, она лежит на высоте около 120 км.

Физиологические и другие свойства атмосферы

Уже на высоте 5 км над уровнем моря у нетренированного человека появляется кислородное голодание и без адаптации работоспособность человека значительно снижается. Здесь кончается физиологическая зона атмосферы. Дыхание человека становится невозможным на высоте 9 км, хотя примерно до 115 км атмосфера содержит кислород.

Атмосфера снабжает нас необходимым для дыхания кислородом. Однако вследствие падения общего давления атмосферы по мере подъёма на высоту соответственно снижается и парциальное давление кислорода.

В лёгких человека постоянно содержится около 3 л альвеолярного воздуха. Парциальное давление кислорода в альвеолярном воздухе при нормальном атмосферном давлении составляет 110 мм рт. ст., давление углекислого газа — 40 мм рт. ст., а паров воды — 47 мм рт. ст. С увеличением высоты давление кислорода падает, а суммарное давление паров воды и углекислоты в лёгких остаётся почти постоянным — около 87 мм рт. ст. Поступление кислорода в лёгкие полностью прекратится, когда давление окружающего воздуха станет равным этой величине.

На высоте около 19—20 км давление атмосферы снижается до 47 мм рт. ст. Поэтому на данной высоте начинается кипение воды и межтканевой жидкости в организме человека. Вне герметической кабины на этих высотах смерть наступает почти мгновенно. Таким образом, с точки зрения физиологии человека, «космос» начинается уже на высоте 15—19 км.

Плотные слои воздуха — тропосфера и стратосфера — защищают нас от поражающего действия радиации. При достаточном разрежении воздуха, на высотах более 36 км, интенсивное действие на организм оказывает ионизирующая радиация — первичные космические лучи; на высотах более 40 км действует опасная для человека ультрафиолетовая часть солнечного спектра.

По мере подъёма на всё большую высоту над поверхностью Земли постепенно ослабляются, а затем и полностью исчезают такие привычные для нас явления, наблюдаемые в нижних слоях атмосферы, как распространение звука, возникновение аэродинамической подъёмной силы и сопротивления, передача тепла конвекцией и др.

В разреженных слоях воздуха распространение звука оказывается невозможным. До высот 60—90 км ещё возможно использование сопротивления и подъёмной силы воздуха для управляемого аэродинамического полёта. Но начиная с высот 100—130 км знакомые каждому лётчику понятия числа М и звукового барьера теряют свой смысл: там проходит условная линия Кармана, за которой начинается область чисто баллистического полёта, управлять которым можно, лишь используя реактивные силы.

На высотах выше 100 км атмосфера лишена и другого замечательного свойства — способности поглощать, проводить и передавать тепловую энергию путём конвекции (т. е. с помощью перемешивания воздуха). Это значит, что различные элементы оборудования, аппаратуры орбитальной космической станции не смогут охлаждаться снаружи так, как это делается обычно на самолёте, — с помощью воздушных струй и воздушных радиаторов. На такой высоте, как и вообще в космосе, единственным способом передачи тепла является тепловое излучение.

История образования атмосферы

Согласно наиболее распространённой теории, атмосфера Земли во времени пребывала в трёх различных составах. Первоначально она состояла из лёгких газов (водорода и гелия), захваченных из межпланетного пространства. Это так называемая первичная атмосфера (около четырех миллиардов лет назад)[источник не указан 401 день]. На следующем этапе активная вулканическая деятельность привела к насыщению атмосферы и другими газами, кроме водорода (углекислым газом, аммиаком, водяным паром). Так образовалась вторичная атмосфера (около трех миллиардов лет[источник не указан 326 дней] до наших дней). Эта атмосфера была восстановительной. Далее процесс образования атмосферы определялся следующими факторами:

  • утечка легких газов (водорода и гелия) в межпланетное пространство;
  • химические реакции, происходящие в атмосфере под влиянием ультрафиолетового излучения, грозовых разрядов и некоторых других факторов.

Постепенно эти факторы привели к образованию третичной атмосферы, характеризующейся гораздо меньшим содержанием водорода и гораздо большим — азота и углекислого газа (образованы в результате химических реакций из аммиака и углеводородов).

Азот

Образование большого количества азота N2 обусловлено окислением аммиачно-водородной атмосферы молекулярным кислородом О2, который стал поступать с поверхности планеты в результате фотосинтеза, начиная с 3 млрд лет назад. Также азот N2 выделяется в атмосферу в результате денитрификации нитратов и других азотсодержащих соединений. Азот окисляется озоном до NO в верхних слоях атмосферы.

Азот N2 вступает в реакции лишь в специфических условиях (например, при разряде молнии). Окисление молекулярного азота озоном при электрических разрядах в малых количествах используется в промышленном изготовлении азотных удобрений. Окислять его с малыми энергозатратами и переводить в биологически активную форму могут цианобактерии (сине-зелёные водоросли) и клубеньковые бактерии, формирующие ризобиальный симбиоз с бобовыми растениями, т. н. сидератами.

Кислород

Состав атмосферы начал радикально меняться с появлением на Земле живых организмов, в результате фотосинтеза, сопровождающегося выделением кислорода и поглощением углекислого газа. Первоначально кислород расходовался на окисление восстановленных соединений — аммиака, углеводородов, закисной формы железа, содержавшейся в океанах и др. По окончании данного этапа содержание кислорода в атмосфере стало расти. Постепенно образовалась современная атмосфера, обладающая окислительными свойствами. Поскольку это вызвало серьёзные и резкие изменения многих процессов, протекающих в атмосфере, литосфере и биосфере, это событие получило название Кислородная катастрофа.

В течение фанерозоя состав атмосферы и содержание кислорода претерпевали изменения. Они коррелировали прежде всего со скоростью отложения органических осадочных пород. Так, в периоды угленакопления содержание кислорода в атмосфере, видимо, заметно превышало современный уровень.

Углекислый газ

Содержание в атмосфере СО2 зависит от вулканической деятельности и химических процессов в земных оболочках, но более всего — от интенсивности биосинтеза и разложения органики в биосфере Земли. Практически вся текущая биомасса планеты (около 2,4·1012 тонн[1]) образуется за счет углекислоты, азота и водяного пара, содержащихся в атмосферном воздухе. Захороненная в океане, в болотах и в лесах органика превращается в уголь, нефть и природный газ.

Благородные газы

Источник инертных газов — аргона, гелия и криптона — вулканические извержения и распад радиоактивных элементов. Земля в целом и атмосфера в частности обеднены инертными газами по сравнению с космосом. Считается, что причина этого заключена в непрерывной утечке газов в межпланетное пространство[источник не указан 326 дней].

Загрязнение атмосферы

В последнее время на эволюцию атмосферы стал оказывать влияние человек. Результатом его деятельности стал постоянный значительный рост содержания в атмосфере углекислого газа из-за сжигания углеводородного топлива, накопленного в предыдущие геологические эпохи. Громадные количества СО2 потребляются при фотосинтезе и поглощаются мировым океаном. Этот газ поступает в атмосферу благодаря разложению карбонатных горных пород и органических веществ растительного и животного происхождения, а также вследствие вулканизма и производственной деятельности человека. За последние 100 лет содержание СО2 в атмосфере возросло на 10 %, причём основная часть (360 млрд тонн) поступила в результате сжигания топлива. Если темпы роста сжигания топлива сохранятся, то в ближайшие 200—300 лет количество СО2 в атмосфере удвоится и может привести к глобальным изменениям климата.

Сжигание топлива — основной источник и загрязняющих газов (СО, NO, SO2). Диоксид серы окисляется кислородом воздуха до SO3 в верхних слоях атмосферы, который в свою очередь взаимодействует с парами воды и аммиака, а образующиеся при этом серная кислота (Н2SO4) и сульфат аммония ((NH4)2SO4) возвращаются на поверхность Земли в виде т. н. кислотных дождей. Использование двигателей внутреннего сгорания приводит к значительному загрязнению атмосферы оксидами азота, углеводородами и соединениями свинца (тетраэтилсвинец Pb(CH3CH2)4)).

Аэрозольное загрязнение атмосферы обусловлено как естественными причинами (извержение вулканов, пыльные бури, унос капель морской воды и пыльцы растений и др.), так и хозяйственной деятельностью человека (добыча руд и строительных материалов, сжигание топлива, изготовление цемента и т. п.). Интенсивный широкомасштабный вынос твёрдых частиц в атмосферу — одна из возможных причин изменений климата планеты.

См. также

  • Воздух
  • Небо
  • Диффузное излучение неба
  • Стандартная атмосфера
  • Список параметров атмосферы стандартной
  • Модель верхней атмосферы Земли
  • Jacchia (модель атмосферы)
  • Геохимический цикл углерода
  • Изменение климата
  • Загрязнение атмосферы
  • Озоновый слой
  • Парниковый эффект
  • Космическое пространство

Ссылки

  • Леса Мира как резервуар углерода

Источник: dic.academic.ru

Из чего состоит атмосфера Земли

Оказывается, атмосфера планеты Земля возникла благодаря двум факторам:

  • падения космических объектов на поверхность нашей планеты. А точнее испарение веществ, из которых состоят эти тела;
  • дегазация земной мантии. Проще говоря, газовые выделения, которые происходят при извержениях вулканов.

Однако, важную роль сыграло наличие воды, флоры и фауны на планете. Потому что всё это привело к появлению биосферы, а также изменению атмосферы.
По данным учёных, в состав атмосферы входят газы и разные примеси. Например, такие, как пыль, частицы воды, кристаллы льда, морские соли и продукты горения.

Атмосфера Земли и её строение

Безусловно, что окружающая нас газовая сфера является не просто тонким слоем воды и воздуха планеты. Это некое облачное одеяло. Оно укрывает и защищает нас от воздействия сил космоса. На данный момент, выделили определённые слои, из которых состоит атмосфера Земли. Ниже рассмотрим их подробнее.

Тропосфера

Это основной, к тому же, нижний слой воздушной оболочки. Вдобавок, в его составе более 80% общей массы воздуха, и примерно 90% всего водяного пара, который есть во всей атмосфере. С учётом географической широты верхняя граница данной окружной части может располагаться на высоте от 8 до 18 км.
Интересно, что в тропосфере ярко выражены конвекция и турбулентность. Более того, именно в этой части происходит образование облаков, создание циклонов и антициклонов. Также учёные отметили характерную особенность данного атмосферного слоя: чем выше — тем меньше температура воздуха.
Между прочим, нижняя зона тропосферы является пограничным слоем. По толщине он примерно 1-2 км. Как оказалось, он тесно связан с поверхностью нашей планеты. Действительно, в нём свойства и состояние земной сферы оказывают влияние на всю окружающую оболочку.

Тропосфера
Тропосфера

Тропопауза

Так называют переходную область между тропосферой и стратосферой. Проще говоря, плавное перевоплощение от одного к другому. Интересно, что здесь отмечается приостановка понижения температуры воздуха с повышением высоты.

Стратосфера как область атмосферы Земли

Данный атмосферный участок находится на высоте от 11 до 50 км. Важно, что именно тут лежит озоновый слой. А он, как известно, оберегает нас от ультрафиолетового излучения.
Сратосфера составляет примерно 20% общей массы земной оболочки.
Характерной особенностью является то, что в нижней части (11-25 км) наблюдается небольшое изменение температуры, а в верхней (25-40 км), наоборот, её активное повышение. К слову сказать, верхнюю часть называют областью инверсии.

Стратосфера
Стратосфера

Стратопауза

Что примечательно, на уровне 40 км температура равняется 00С, и сохраняется до 55 км. Эта территория носит название стратопауза. Между прочим, она представляет край стратосферы, и переход от неё к мезосфере.

Мезосфера

Собственно, она берёт своё начало на уровне 50 км. А верхняя граница её располагается на 80-90 км. По данным учёных, температура в мезосфере снижается с повышением высоты. Однако здесь протекает лучистый теплообмен. Кроме того, сложные фотохимические процессы порождают свечение атмосферы Земли.
Доля мезосферы относительно общей массы составляет не больше 0,3%.

Мезосферные серебристые облака
Мезосферные серебристые облака

Мезопауза

Это переходный участок от мезосферы до термосферы. Стоит отметить, что температурный фон минимальный (примерно -90°С).

Линия Кармана

На самом деле, это точка вершины над уровнем моря. К тому же, её принято принимать за границу участка от атмосферы Земли до самого космоса. Установлено, что линия Кармана лежит на высоте 100 км от уровня моря.

Линия кармана
Линия кармана

Атмосфера Земли и её термосфера

Можно сказать, что она является самым верхней границей воздушной зоны планеты (приблизительно 800 км). Но температура всей области разная. Например, до 200-300 км наблюдается её повышение до 1500 К, а после держится в одном значении.

Полярное сияние из космоса
Полярное сияние из космоса

Интересно, что на этом участке отмечают полярные сияния. По всей вероятности они появляются в результате ионизации воздуха. Которые, в свою очередь, возникают под действием радиации Солнца и космического излучения. Между прочим, главные и основные области ионосферы располагаются как раз здесь.
Кроме того, на высоте выше 300 км присутствует большое количество атомарного кислорода.
К удивлению, верхняя граница термосферы может изменяться в размерах. Это связано, главным образом, с солнечной активностью. Так, к примеру, в момент низкой активности происходит его уменьшение, и наоборот.
От общей атмосферной массы Земли на термосферу приходится чуть меньше 0,05%.

Термопауза

Собственно говоря, это область, которая расположена сверху от термосферы. Здесь наблюдается небольшое поглощение излучения Солнца. Притом установлено, что температура остаётся неизменной.

Экзосфера

По-другому её также называют сферой рассеяния. Более того, она является внешней частью термосферы. В данной зоне в вышей степени разреженный газ. По этой причине происходит утечка его элементов в космос.
На уровне 2000-3000 км экзосфера медленно сливается с межпланетной территорией. Поэтому часто этот участок называют ближнекосмическим вакуумом. В нём пространство заполнено редкими частицами газа, в основном атомами водорода.

Спутники системы GPS и ГЛОНАСС находятся в экзосфере
Спутники системы GPS и ГЛОНАСС находятся в экзосфере

Из чего ещё состоит атмосфера Земли

Помимо территориальных воздушных земельных слоев, различают ионосферу и нейтросферу. Они делятся по электрическим свойствам. Как уже было сказано, ионосфера преимущественно находится в термосфере. И связана она с ионизацией воздуха. Но что такое нейтросфера понятно не всем. Проще говоря, это нижняя часть атмосферного слоя. В ней преобладают незаряженные частицы воздуха Земли.

Прорыв через атмосферу
Прорыв через атмосферу

Более того, в окружающей нас воздушной оболочке, учёные выделили две области:
1) Гетеросфера — участок, где силы гравитации влияют на газы. Таким образом происходит их небольшое перемешивание. По этой причине состав гетеросферы переменный.
2) Гомосфера — область под гетеросферой, где отмечают сильно перемешанные газы. Поэтому состав однородный.
Вдобавок существует граница между этими зонами. Её называют турбопаузой. Её территория простирается на высоте 120 км.

Как видно, атмосфера планеты Земля довольно интересная по своей структуре. Хотя нельзя сказать, что прямо сложная. По всей вероятности, мы её довольно хорошо изучили. Но Вселенная и природа всегда преподносят нам сюрпризы.

Источник: kosmosgid.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.