Слои земной атмосферы


Атмосфера – воздушная оболочка земного шара, вращающаяся вместе с Землёй. Верхнюю границу атмосферы условно проводят на высотах 150-200 км. Нижняя граница – поверхность Земли.

АтмосфераАтмосферный воздух представляет собой смесь газов. Большая часть его объёма в приземном слое воздуха приходится на азот (78%) и кислород (21%). Кроме того, в воздухе содержатся инертные газы (аргон, гелий, неон и др.), углекислый газ (0,03), водяной пар и различные твёрдые частицы (пыль, сажа, кристаллы солей).

Воздух бесцветен, а цвет неба объясняется особенностями рассеивания световых волн.

Атмосфера состоит из нескольких слоёв: тропосферы, стратосферы, мезосферы и термосферы.

Нижний приземной слой воздуха называется тропосферой. На различных широтах её мощность неодинакова.


опосфера повторяет форму планеты и участвует вместе с Землёй в осевом вращении.  У экватора мощность атмосферы колеблется от 10 до 20 км. У экватора она больше, а  у полюсов – меньше. Тропосфера характеризуется максимальной плотностью воздуха, в неё сосредоточено 4/5 массы всей атмосферы. Тропосфера определяет погодные условия: здесь формируются различные воздушные массы, образуются облака и осадки, происходит интенсивное горизонтальное и вертикальное движение воздуха.

Над тропосферой, до высоты 50 км, располагается стратосфера. Она характеризуется меньшей плотностью воздуха, в ней отсутствует водяной пар. В нижней части стратосферы на высотах около 25 км. расположен «озоновый экран» – слой атмосферы с повышенной концентрацией озона, который поглощает ультрафиолетовое излучение, гибельное для организмов.

На высоте 50 до 80-90 км простирается мезосфера. С увеличением высоты температура понижается со средним вертикальным градиентом (0,25-0,3)° / 100 м, а плотность воздуха уменьшается. Основным энергетическим процессом является лучистый теплообмен. Свечение атмосферы обусловлены сложными фотохимическими процессами с участием радикалов, колебательно возбуждённых молекул.

Термосфера располагается на высоте 80-90 до 800 км. Плотность воздуха здесь минимальная, степень ионизации воздуха очень велика. Температура изменяется в зависимости от активности Солнца. В связи с большим количеством заряженных частиц здесь наблюдаются полярные сияния и магнитные бури.


АтмосфераАтмосфера имеет огромное значение для природы Земли.
Без кислорода  невозможно дыхание живых организмов. Её озоновый слой защищает всё живое от губительных ультрафиолетовых лучей. Атмосфера сглаживает колебание температур: поверхность Земли не переохлаждается ночью и не перегревается днём. В плотных слоях атмосферного воздуха не достигая поверхности планеты, сгорают от терния метеориты.

Атмосфера взаимодействует со всеми оболочками земли. С её помощью осуществляется обмен теплом и влагой между океаном и сушей. Без атмосферы не было бы облаков, осадков, ветров.

Значительное неблагоприятное влияние на атмосферу оказывает хозяйственная деятельность человека. Происходит загрязнение атмосферного воздуха, что приводит к увеличению концентрации оксида углерода (CO2). А это способствует глобальному потеплению климата и усиливает «парниковый эффект». Озоновый слой Земли разрушается из-за отходов производств и работы транспорта.


Атмосфера нуждается в охране. В развитых странах осуществляется комплекс мер по защите атмосферного воздуха от загрязнения.

Остались вопросы? Хотите знать больше об атмосфере?
Чтобы получить помощь репетитора – зарегистрируйтесь.

© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Источник: blog.tutoronline.ru

Из чего состоит атмосфера Земли

Оказывается, атмосфера планеты Земля возникла благодаря двум факторам:

  • падения космических объектов на поверхность нашей планеты. А точнее испарение веществ, из которых состоят эти тела;
  • дегазация земной мантии. Проще говоря, газовые выделения, которые происходят при извержениях вулканов.

Однако, важную роль сыграло наличие воды, флоры и фауны на планете. Потому что всё это привело к появлению биосферы, а также изменению атмосферы.
По данным учёных, в состав атмосферы входят газы и разные примеси. Например, такие, как пыль, частицы воды, кристаллы льда, морские соли и продукты горения.

Атмосфера Земли и её строение

Безусловно, что окружающая нас газовая сфера является не просто тонким слоем воды и воздуха планеты. Это некое облачное одеяло. Оно укрывает и защищает нас от воздействия сил космоса. На данный момент, выделили определённые слои, из которых состоит атмосфера Земли. Ниже рассмотрим их подробнее.


Тропосфера

Это основной, к тому же, нижний слой воздушной оболочки. Вдобавок, в его составе более 80% общей массы воздуха, и примерно 90% всего водяного пара, который есть во всей атмосфере. С учётом географической широты верхняя граница данной окружной части может располагаться на высоте от 8 до 18 км.
Интересно, что в тропосфере ярко выражены конвекция и турбулентность. Более того, именно в этой части происходит образование облаков, создание циклонов и антициклонов. Также учёные отметили характерную особенность данного атмосферного слоя: чем выше — тем меньше температура воздуха.
Между прочим, нижняя зона тропосферы является пограничным слоем. По толщине он примерно 1-2 км. Как оказалось, он тесно связан с поверхностью нашей планеты. Действительно, в нём свойства и состояние земной сферы оказывают влияние на всю окружающую оболочку.

Тропосфера
Тропосфера

Тропопауза

Так называют переходную область между тропосферой и стратосферой. Проще говоря, плавное перевоплощение от одного к другому. Интересно, что здесь отмечается приостановка понижения температуры воздуха с повышением высоты.


Стратосфера как область атмосферы Земли

Данный атмосферный участок находится на высоте от 11 до 50 км. Важно, что именно тут лежит озоновый слой. А он, как известно, оберегает нас от ультрафиолетового излучения.
Сратосфера составляет примерно 20% общей массы земной оболочки.
Характерной особенностью является то, что в нижней части (11-25 км) наблюдается небольшое изменение температуры, а в верхней (25-40 км), наоборот, её активное повышение. К слову сказать, верхнюю часть называют областью инверсии.

Стратосфера
Стратосфера

Стратопауза

Что примечательно, на уровне 40 км температура равняется 00С, и сохраняется до 55 км. Эта территория носит название стратопауза. Между прочим, она представляет край стратосферы, и переход от неё к мезосфере.

Мезосфера

Собственно, она берёт своё начало на уровне 50 км. А верхняя граница её располагается на 80-90 км. По данным учёных, температура в мезосфере снижается с повышением высоты. Однако здесь протекает лучистый теплообмен. Кроме того, сложные фотохимические процессы порождают свечение атмосферы Земли.
Доля мезосферы относительно общей массы составляет не больше 0,3%.


Мезосферные серебристые облака
Мезосферные серебристые облака

Мезопауза

Это переходный участок от мезосферы до термосферы. Стоит отметить, что температурный фон минимальный (примерно -90°С).

Линия Кармана

На самом деле, это точка вершины над уровнем моря. К тому же, её принято принимать за границу участка от атмосферы Земли до самого космоса. Установлено, что линия Кармана лежит на высоте 100 км от уровня моря.

Линия кармана
Линия кармана

Атмосфера Земли и её термосфера

Можно сказать, что она является самым верхней границей воздушной зоны планеты (приблизительно 800 км). Но температура всей области разная. Например, до 200-300 км наблюдается её повышение до 1500 К, а после держится в одном значении.

Полярное сияние из космоса
Полярное сияние из космоса

Интересно, что на этом участке отмечают полярные сияния. По всей вероятности они появляются в результате ионизации воздуха. Которые, в свою очередь, возникают под действием радиации Солнца и космического излучения. Между прочим, главные и основные области ионосферы располагаются как раз здесь.
Кроме того, на высоте выше 300 км присутствует большое количество атомарного кислорода.
К удивлению, верхняя граница термосферы может изменяться в размерах. Это связано, главным образом, с солнечной активностью. Так, к примеру, в момент низкой активности происходит его уменьшение, и наоборот.
От общей атмосферной массы Земли на термосферу приходится чуть меньше 0,05%.

Термопауза

Собственно говоря, это область, которая расположена сверху от термосферы. Здесь наблюдается небольшое поглощение излучения Солнца. Притом установлено, что температура остаётся неизменной.

Экзосфера

По-другому её также называют сферой рассеяния. Более того, она является внешней частью термосферы. В данной зоне в вышей степени разреженный газ. По этой причине происходит утечка его элементов в космос.
На уровне 2000-3000 км экзосфера медленно сливается с межпланетной территорией. Поэтому часто этот участок называют ближнекосмическим вакуумом. В нём пространство заполнено редкими частицами газа, в основном атомами водорода.

Спутники системы GPS и ГЛОНАСС находятся в экзосфере
Спутники системы GPS и ГЛОНАСС находятся в экзосфере

Из чего ещё состоит атмосфера Земли


Помимо территориальных воздушных земельных слоев, различают ионосферу и нейтросферу. Они делятся по электрическим свойствам. Как уже было сказано, ионосфера преимущественно находится в термосфере. И связана она с ионизацией воздуха. Но что такое нейтросфера понятно не всем. Проще говоря, это нижняя часть атмосферного слоя. В ней преобладают незаряженные частицы воздуха Земли.

Прорыв через атмосферу
Прорыв через атмосферу

Более того, в окружающей нас воздушной оболочке, учёные выделили две области:
1) Гетеросфера — участок, где силы гравитации влияют на газы. Таким образом происходит их небольшое перемешивание. По этой причине состав гетеросферы переменный.
2) Гомосфера — область под гетеросферой, где отмечают сильно перемешанные газы. Поэтому состав однородный.
Вдобавок существует граница между этими зонами. Её называют турбопаузой. Её территория простирается на высоте 120 км.

Как видно, атмосфера планеты Земля довольно интересная по своей структуре. Хотя нельзя сказать, что прямо сложная. По всей вероятности, мы её довольно хорошо изучили. Но Вселенная и природа всегда преподносят нам сюрпризы.

Источник: kosmosgid.ru

Строение атмосферы


По вер­ти­ка­ли А. име­ет слои­стую струк­ту­ру, оп­ре­де­ляе­мую гл. обр. осо­бен­но­стя­ми вер­ти­каль­но­го рас­пре­де­ле­ния темп-ры (рис.), ко­то­рое за­ви­сит от гео­гра­фич. по­ло­же­ния, се­зо­на, вре­ме­ни су­ток и т. д. Ниж­ний слой А. – тро­по­сфе­ра – ха­рак­те­ри­зу­ет­ся па­де­ни­ем темп-ры с вы­со­той (при­мер­но на 6 °C на 1 км), его вы­со­та от 8–10 км в по­ляр­ных ши­ро­тах до 16–18 км в тро­пи­ках. Бла­го­да­ря бы­ст­ро­му убы­ва­нию плот­но­сти воз­ду­ха с вы­со­той в тро­по­сфе­ре на­хо­дит­ся ок. 80% всей мас­сы А. Над тро­по­сфе­рой рас­по­ла­га­ет­ся стра­то­сфе­ра – слой, ко­то­рый ха­рак­те­ри­зу­ет­ся в об­щем по­вы­ше­ни­ем темп-ры с вы­со­той. Пе­ре­ход­ный слой ме­ж­ду тро­по­сфе­рой и стра­то­сфе­рой на­зы­ва­ет­ся тро­по­пау­зой. В ниж­ней стра­то­сфе­ре до уров­ня ок. 20 км темп-ра ма­ло ме­ня­ет­ся с вы­со­той (т. н. изо­тер­мич. об­ласть) и не­ред­ко да­же не­зна­чи­тель­но умень­ша­ет­ся. Вы­ше темп-ра воз­рас­та­ет из-за по­гло­ще­ния УФ-ра­диа­ции Солн­ца озо­ном, вна­ча­ле мед­лен­но, а с уров­ня 34–36 км – бы­ст­рее. Верх­няя гра­ни­ца стра­то­сфе­ры – стра­то­пау­за – рас­по­ло­же­на на выс.
–55 км, со­от­вет­ст­вую­щей мак­си­му­му темп-ры (260–270 К). Слой А., рас­по­ло­жен­ный на выс. 55–85 км, где темп-ра сно­ва па­да­ет с вы­со­той, на­зы­ва­ет­ся ме­зо­сфе­рой, на его верх­ней гра­ни­це – ме­зо­пау­зе – темп-ра дос­ти­га­ет ле­том 150–160 К, а зи­мой 200–230 К. Над ме­зо­пау­зой на­чи­на­ет­ся тер­мо­сфе­ра – слой, ха­рак­те­ри­зую­щий­ся бы­ст­рым по­вы­ше­ни­ем темп-ры, дос­ти­гаю­щей на выс. 250 км зна­че­ний 800–1200 К. В тер­мо­сфе­ре по­гло­ща­ет­ся кор­пус­ку­ляр­ная и рент­ге­нов­ская ра­диа­ция Солн­ца, тор­мо­зят­ся и сго­ра­ют ме­тео­ры, по­это­му она вы­пол­ня­ет функ­цию за­щит­но­го слоя Зем­ли. Ещё вы­ше на­хо­дит­ся эк­зо­сфе­ра, от­ку­да ат­мо­сфер­ные га­зы рас­сеи­ва­ют­ся в ми­ро­вое про­стран­ст­во за счёт дис­си­па­ции и где про­ис­хо­дит по­сте­пен­ный пе­ре­ход от А. к меж­пла­нет­но­му про­стран­ст­ву.

Состав атмосферы

До выс. ок. 100 км А. прак­ти­че­ски од­но­род­на по хи­мич. со­ста­ву и ср. мо­ле­ку­ляр­ная мас­са воз­ду­ха (ок. 29) в ней по­сто­ян­на. Вбли­зи по­верх­но­сти Зем­ли А. со­сто­ит из азо­та (ок. 78,1% по объёму) и ки­сло­ро­да (ок. 20,9%), а так­же со­дер­жит ма­лые ко­ли­че­ст­ва ар­го­на, ди­ок­си­да уг­ле­ро­да (уг­ле­ки­сло­го га­за), не­она и др. по­сто­ян­ных и пе­ре­мен­ных ком­по­нен­тов (см. Воз­дух).

Кро­ме то­го, А. со­дер­жит не­боль­шие ко­ли­че­ст­ва озо­на, ок­си­дов азо­та, ам­миа­ка, ра­до­на и др. От­но­сит. со­дер­жа­ние осн. со­став­ляю­щих воз­ду­ха по­сто­ян­но во вре­ме­ни и од­но­род­но в раз­ных гео­гра­фич. рай­онах. Со­дер­жа­ние во­дя­но­го па­ра и озо­на пе­ре­мен­но в про­стран­ст­ве и вре­ме­ни; не­смот­ря на ма­лое со­дер­жа­ние, их роль в ат­мо­сфер­ных про­цес­сах весь­ма су­ще­ст­вен­на.

Вы­ше 100–110 км про­ис­хо­дит дис­со­циа­ция мо­ле­кул ки­сло­ро­да, уг­ле­ки­сло­го га­за и во­дя­но­го па­ра, по­это­му мо­ле­ку­ляр­ная мас­са воз­ду­ха умень­ша­ет­ся. На выс. ок. 1000 км на­чи­на­ют пре­об­ла­дать лёг­кие га­зы – ге­лий и во­до­род, а ещё вы­ше А. Зем­ли по­сте­пен­но пе­ре­хо­дит в меж­пла­нет­ный газ.

Наи­бо­лее важ­ная пе­ре­мен­ная ком­по­нен­та А. – во­дя­ной пар, ко­то­рый по­сту­па­ет в А. при ис­па­ре­нии с по­верх­но­сти во­ды и влаж­ной поч­вы, а так­же пу­тём транс­пи­ра­ции рас­те­ния­ми. От­но­сит. со­дер­жа­ние во­дя­но­го па­ра ме­ня­ет­ся у зем­ной по­верх­но­сти от 2,6% в тро­пи­ках до 0,2% в по­ляр­ных ши­ро­тах. С вы­со­той оно бы­ст­ро па­да­ет, убы­вая на­по­ло­ви­ну уже на выс. 1,5–2 км. В вер­ти­каль­ном стол­бе А. в уме­рен­ных ши­ро­тах со­дер­жит­ся ок. 1,7 см «слоя оса­ж­дён­ной во­ды». При кон­ден­са­ции во­дя­но­го па­ра об­ра­зу­ют­ся об­ла­ка, из ко­то­рых вы­па­да­ют осад­ки ат­мо­сфер­ные в ви­де до­ж­дя, гра­да, сне­га.

Важ­ной со­став­ляю­щей ат­мо­сфер­но­го воз­ду­ха яв­ля­ет­ся озон, со­сре­до­то­чен­ный на 90% в стра­то­сфе­ре (ме­ж­ду 10 и 50 км), ок. 10% его на­хо­дит­ся в тро­по­сфе­ре. Озон обес­пе­чи­ва­ет по­гло­ще­ние жё­ст­кой УФ-ра­диа­ции (с дли­ной вол­ны ме­нее 290 нм), и в этом – его за­щит­ная роль для био­сфе­ры. Зна­че­ния об­ще­го со­дер­жа­ния озо­на ме­ня­ют­ся в за­ви­си­мо­сти от ши­ро­ты и се­зо­на в пре­де­лах от 0,22 до 0,45 см (тол­щи­на слоя озо­на при дав­ле­нии $p=$ 1 атм и темп-ре $T=$ 0 °C). В озо­но­вых ды­рах, на­блю­дае­мых вес­ной в Ан­тарк­ти­ке с нач. 1980-х гг., со­дер­жа­ние озо­на мо­жет па­дать до 0,07 см. Оно уве­ли­чи­ва­ет­ся от эк­ва­то­ра к по­лю­сам и име­ет го­до­вой ход с мак­си­му­мом вес­ной и ми­ни­му­мом осе­нью, при­чём ам­пли­ту­да го­до­во­го хо­да ма­ла в тро­пи­ках и рас­тёт к вы­со­ким ши­ро­там. Су­ще­ст­вен­ной пе­ре­мен­ной ком­по­нен­той А. яв­ля­ет­ся уг­ле­кис­лый газ, со­дер­жа­ние ко­то­ро­го в ат­мо­сфе­ре за по­след­ние 200 лет вы­рос­ло на 35%, что объ­яс­ня­ет­ся в осн. ан­тро­по­ген­ным фак­то­ром. На­блю­да­ет­ся его ши­рот­ная и се­зон­ная из­мен­чи­вость, свя­зан­ная с фо­то­син­те­зом рас­те­ний и рас­тво­ри­мо­стью в мор­ской во­де (со­глас­но за­ко­ну Ген­ри, рас­тво­ри­мость га­за в во­де умень­ша­ет­ся с рос­том её темп-ры).

Важ­ную роль в фор­ми­ро­ва­нии кли­ма­та пла­не­ты иг­ра­ет ат­мо­сфер­ный аэ­ро­золь – взве­шен­ные в воз­ду­хе твёр­дые и жид­кие час­ти­цы раз­ме­ром от не­сколь­ких нм до де­сят­ков мкм. Раз­ли­ча­ют­ся аэ­ро­зо­ли ес­те­ст­вен­но­го и ан­тро­по­ген­но­го про­ис­хо­ж­де­ния. Аэ­ро­золь об­ра­зу­ет­ся в про­цес­се га­зо­фаз­ных ре­ак­ций из про­дук­тов жиз­не­дея­тель­но­сти рас­те­ний и хо­зяйств. дея­тель­но­сти че­ло­ве­ка, вул­ка­нич. из­вер­же­ний, в результате подъ­ё­ма пы­ли вет­ром с по­верх­но­сти пла­не­ты, осо­бен­но с её пус­тын­ных ре­гио­нов, а так­же об­ра­зу­ет­ся из кос­мич. пы­ли, по­па­даю­щей в верх­ние слои А. Бóльшая часть аэ­ро­зо­ля со­сре­до­то­че­на в тро­по­сфе­ре, аэ­ро­золь от вул­ка­нич. из­вер­же­ний об­ра­зу­ет т. н. слой Юн­ге на выс. ок. 20 км. Наи­боль­шее ко­ли­че­ст­во ан­тро­по­ген­но­го аэ­ро­зо­ля по­па­да­ет в А. в ре­зуль­та­те ра­бо­ты ав­то­транс­пор­та и ТЭЦ, хи­мич. про­из­водств, сжи­га­ния то­п­ли­ва и др. Поэтому в не­ко­то­рых рай­онах со­став А. за­мет­но от­ли­ча­ет­ся от обыч­но­го воз­ду­ха, что по­тре­бо­ва­ло соз­да­ния спец. служ­бы на­блю­де­ний и кон­тро­ля за уров­нем за­гряз­не­ния ат­мо­сфер­но­го воз­ду­ха.

Эволюция атмосферы

Совр. А. име­ет, по-ви­ди­мо­му, вто­рич­ное про­ис­хо­ж­де­ние: она об­ра­зо­ва­лась из га­зов, вы­де­лен­ных твёр­дой обо­лоч­кой Зем­ли по­сле за­вер­ше­ния фор­ми­ро­ва­ния пла­не­ты ок. 4,5 млрд. лет на­зад. В те­че­ние гео­ло­гич. ис­то­рии Зем­ли А. пре­тер­пе­ва­ла зна­чит. из­ме­не­ния сво­его со­ста­ва под влия­ни­ем ря­да фак­то­ров: дис­си­па­ции (уле­ту­чи­ва­ния) га­зов, пре­им. бо­лее лёг­ких, в кос­мич. про­стран­ст­во; вы­де­ле­ния га­зов из ли­то­сфе­ры в ре­зуль­та­те вул­ка­нич. дея­тель­но­сти; хи­мич. ре­ак­ций ме­ж­ду ком­по­нен­та­ми А. и по­ро­да­ми, сла­гаю­щи­ми зем­ную ко­ру; фо­то­хи­мич. ре­ак­ций в са­мой А. под влия­ни­ем сол­неч­но­го УФ-из­лу­че­ния; ак­кре­ции (за­хва­та) ма­те­рии меж­пла­нет­ной сре­ды (напр., ме­те­ор­но­го ве­ще­ст­ва). Раз­ви­тие А. тес­но свя­за­но с гео­ло­гич. и гео­хи­мич. про­цес­са­ми, а по­след­ние 3–4 млрд. лет так­же с дея­тель­но­стью био­сфе­ры. Зна­чит. часть га­зов, со­став­ляю­щих совр. А. (азот, уг­ле­кис­лый газ, во­дя­ной пар), воз­ник­ла в хо­де вул­ка­нич. дея­тель­но­сти и ин­тру­зии, вы­но­сив­шей их из глу­бин Зем­ли. Ки­сло­род поя­вил­ся в за­мет­ных ко­ли­че­ст­вах ок. 2 млрд. лет то­му на­зад как ре­зуль­тат дея­тель­но­сти фо­то­син­те­зи­рую­щих ор­га­низ­мов, пер­во­на­чаль­но за­ро­див­ших­ся в по­верх­но­ст­ных во­дах океа­на.

По дан­ным о хи­мич. со­ста­ве кар­бо­нат­ных от­ло­же­ний по­лу­че­ны оцен­ки ко­ли­че­ст­ва уг­ле­ки­сло­го га­за и ки­сло­ро­да в А. гео­ло­ги­чес­ко­го про­шло­го. На про­тя­же­нии фа­не­ро­зоя (по­след­ние 570 млн. лет ис­то­рии Зем­ли) ко­ли­че­ст­во уг­ле­ки­с­ло­го га­за в А. из­ме­ня­лось в ши­ро­ких пре­де­лах в со­от­вет­ст­вии с уров­нем вул­ка­нич. ак­тив­но­сти, темп-рой океа­на и уров­нем фо­то­син­те­за. Боль­шую часть это­го вре­ме­ни кон­цен­тра­ция уг­ле­ки­сло­го га­за в А. бы­ла зна­чи­тель­но вы­ше со­вре­мен­ной (до 10 раз). Ко­ли­че­ст­во ки­с­ло­ро­да в А. фа­не­ро­зоя су­ще­ст­вен­но из­ме­ня­лось, при­чём пре­об­ла­да­ла тен­ден­ция к его уве­ли­че­нию. В А. до­кем­брия мас­са уг­ле­ки­сло­го га­за бы­ла, как пра­ви­ло, боль­ше, а мас­са ки­сло­ро­да – мень­ше по срав­не­нию с А. фа­не­ро­зоя. Ко­ле­ба­ния ко­ли­че­ст­ва уг­ле­ки­сло­го га­за ока­зы­ва­ли в про­шлом су­ще­ст­вен­ное влия­ние на кли­мат, уси­ли­вая пар­ни­ко­вый эф­фект при рос­те кон­цен­тра­ции уг­ле­ки­сло­го га­за, бла­го­да­ря че­му кли­мат на про­тя­же­нии осн. час­ти фа­не­ро­зоя был го­раз­до те­п­лее по срав­не­нию с совр. эпо­хой.

Атмосфера и жизнь

Без А. Зем­ля бы­ла бы мёрт­вой пла­не­той. Ор­га­нич. жизнь про­те­ка­ет в тес­ном взаи­мо­дей­ст­вии с А. и свя­зан­ны­ми с ней кли­ма­том и по­го­дой. Не­зна­чи­тель­ная по мас­се по срав­не­нию с пла­не­той в це­лом (при­мер­но мил­ли­он­ная часть), А. яв­ля­ет­ся не­пре­мен­ным ус­ло­ви­ем для всех форм жиз­ни. Наи­боль­шее зна­че­ние из ат­мо­сфер­ных га­зов для жиз­не­дея­тель­но­сти ор­га­низ­мов име­ют ки­сло­род, азот, во­дя­ной пар, уг­ле­кис­лый газ, озон. При по­гло­ще­нии уг­ле­ки­сло­го га­за фо­то­син­те­зи­рую­щи­ми рас­те­ния­ми соз­да­ёт­ся ор­га­нич. ве­ще­ст­во, ис­поль­зуе­мое как ис­точ­ник энер­гии по­дав­ляю­щим боль­шин­ст­вом жи­вых су­ществ, вклю­чая че­ло­ве­ка. Кис­лород не­об­хо­дим для су­ще­ст­во­ва­ния аэроб­ных ор­га­низ­мов, для ко­то­рых при­ток энер­гии обес­пе­чи­ва­ет­ся ре­ак­ция­ми окис­ле­ния ор­га­нич. ве­ще­ст­ва. Азот, ус­ваи­вае­мый не­ко­то­ры­ми мик­ро­ор­га­низ­ма­ми (азо­то­фик­са­то­ра­ми), не­об­хо­дим для ми­нер. пи­та­ния рас­те­ний. Озон, по­гло­щаю­щий жё­ст­кое УФ-из­лу­че­ние Солн­ца, зна­чи­тель­но ос­лаб­ля­ет эту вред­ную для жиз­ни часть сол­неч­ной ра­диа­ции. Кон­ден­са­ция во­дя­но­го па­ра в А., об­ра­зо­ва­ние об­ла­ков и по­сле­дую­щее вы­па­де­ние ат­мо­сфер­ных осад­ков по­став­ля­ют на су­шу во­ду, без ко­то­рой не­воз­мож­ны ни­ка­кие фор­мы жиз­ни. Жиз­не­дея­тель­ность ор­га­низ­мов в гид­ро­сфе­ре во мно­гом оп­ре­де­ля­ет­ся ко­ли­че­ст­вом и хи­мич. со­ста­вом ат­мо­сфер­ных га­зов, рас­тво­рён­ных в во­де. По­сколь­ку хи­мич. со­став А. су­ще­ст­вен­но за­ви­сит от дея­тель­но­сти ор­га­низ­мов, био­сфе­ру и А. мож­но рас­смат­ри­вать как часть еди­ной сис­те­мы, под­дер­жа­ние и эво­лю­ция ко­то­рой (см. Био­гео­хи­ми­че­ские цик­лы) име­ла боль­шое зна­че­ние для из­ме­не­ния со­ста­ва А. на про­тя­же­нии ис­то­рии Зем­ли как пла­не­ты.

Радиационный, тепловой и водный балансы атмосферы

Сол­неч­ная ра­диа­ция яв­ля­ет­ся прак­ти­че­ски единств. ис­точ­ни­ком энер­гии для всех фи­зич. про­цес­сов в А. Глав­ная осо­бен­ность ра­ди­ац. ре­жи­ма А. – т. н. пар­ни­ко­вый эф­фект: А. дос­та­точ­но хо­ро­шо про­пус­ка­ет к зем­ной по­верх­но­сти сол­неч­ную ра­диа­цию, но ак­тив­но по­гло­ща­ет те­п­ло­вое длин­но­вол­но­вое из­лу­че­ние зем­ной по­верх­но­сти, часть ко­то­ро­го воз­вра­ща­ет­ся к по­верх­но­сти в фор­ме встреч­но­го из­лу­че­ния, ком­пен­си­рую­ще­го ра­ди­ац. по­те­рю те­п­ла зем­ной по­верх­но­стью (см. Ат­мос­фер­ное из­лу­че­ние). В от­сут­ст­вие А. ср. темп-ра зем­ной по­верх­но­сти бы­ла бы –18 °C, в дей­ст­ви­тель­но­сти она 15 °C. При­хо­дя­щая сол­неч­ная ра­диа­ция час­тич­но (ок. 20%) по­гло­ща­ет­ся в А. (гл. обр. во­дя­ным па­ром, ка­п­ля­ми во­ды, уг­ле­кис­лым га­зом, озо­ном и аэ­ро­зо­ля­ми), а так­же рас­сеи­ва­ет­ся (ок. 7%) на час­ти­цах аэ­ро­зо­ля и флук­туа­ци­ях плот­но­сти (рэ­ле­ев­ское рас­сея­ние). Сум­мар­ная ра­диа­ция, дос­ти­гая зем­ной по­верх­но­сти, час­тич­но (ок. 23%) от­ра­жа­ет­ся от неё. Ко­эф. от­ра­же­ния оп­ре­де­ля­ет­ся от­ра­жат. спо­соб­но­стью под­сти­лаю­щей по­верх­но­сти, т. н. аль­бе­до. В сред­нем аль­бе­до Зем­ли для ин­те­граль­но­го по­то­ка сол­неч­ной ра­диа­ции близ­ко к 30%. Оно ме­ня­ет­ся от не­сколь­ких про­цен­тов (су­хая поч­ва и чер­но­зём) до 70–90% для свеже­вы­пав­ше­го сне­га. Ра­ди­ац. те­п­ло­об­мен ме­ж­ду зем­ной по­верх­но­стью и А. су­ще­ст­вен­но за­ви­сит от аль­бе­до и оп­ре­де­ля­ет­ся эф­фек­тив­ным из­лу­че­ни­ем по­верх­но­сти Зем­ли и по­гло­щён­ным ею про­ти­во­из­лу­че­ни­ем А. Ал­геб­ра­ич. сум­ма по­то­ков ра­диа­ции, вхо­дя­щих в зем­ную ат­мо­сфе­ру из кос­мич. про­стран­ст­ва и ухо­дя­щих из неё об­рат­но, на­зы­ва­ет­ся ра­диа­ци­он­ным ба­лан­сом.

Пре­об­ра­зо­ва­ния сол­неч­ной ра­диа­ции по­сле её по­гло­ще­ния А. и зем­ной по­верх­но­стью оп­ре­де­ля­ют те­п­ло­вой ба­ланс Зем­ли как пла­не­ты. Гл. ис­точ­ник те­п­ла для А. – зем­ная по­верх­ность; те­п­ло­та от неё пе­ре­да­ёт­ся не толь­ко в ви­де длин­но­вол­но­во­го из­лу­че­ния, но и пу­тём кон­век­ции, а так­же вы­де­ля­ет­ся при кон­ден­са­ции во­дя­но­го па­ра. До­ли этих при­то­ков те­п­ло­ты рав­ны в ср. 20%, 7% и 23% со­от­вет­ст­вен­но. Сю­да же до­бав­ля­ет­ся ок. 20% те­п­ло­ты за счёт по­гло­ще­ния пря­мой сол­неч­ной ра­диа­ции. По­ток сол­неч­ной ра­диа­ции за еди­ни­цу вре­ме­ни че­рез еди­нич­ную пло­щад­ку, пер­пен­ди­ку­ляр­ную сол­неч­ным лу­чам и рас­по­ло­жен­ную вне А. на ср. рас­стоя­нии от Зем­ли до Солн­ца (т. н. сол­неч­ная по­сто­ян­ная), ра­вен 1367 Вт/м2, из­ме­не­ния со­став­ля­ют 1–2 Вт/м2 в за­ви­си­мо­сти от цик­ла сол­неч­ной ак­тив­но­сти. При пла­не­тар­ном аль­бе­до ок. 30% средний по вре­ме­ни гло­баль­ный при­ток сол­неч­ной энер­гии к пла­не­те со­став­ля­ет 239 Вт/м2. По­сколь­ку Зем­ля как пла­не­та ис­пус­ка­ет в кос­мос в сред­нем та­кое же ко­ли­че­ст­во энер­гии, то, со­глас­но за­ко­ну Сте­фа­на – Больц­ма­на, эф­фек­тив­ная темп-ра ухо­дя­ще­го те­п­ло­во­го длин­но­вол­но­во­го из­лу­че­ния 255 К (–18 °C). В то же вре­мя ср. темп-ра зем­ной по­верх­но­сти со­став­ля­ет 15 °C. Раз­ни­ца в 33 °C воз­ни­ка­ет за счёт пар­ни­ко­во­го эф­фек­та.

Вод­ный ба­ланс А. в це­лом со­от­вет­ст­ву­ет ра­вен­ст­ву ко­ли­че­ст­ва вла­ги, ис­па­рив­шей­ся с по­верх­но­сти Зем­ли, ко­ли­че­ст­ву осад­ков, вы­па­даю­щих на зем­ную по­верх­ность. А. над океа­на­ми по­лу­ча­ет боль­ше вла­ги от про­цес­сов ис­па­ре­ния, чем над су­шей, а те­ря­ет в ви­де осад­ков 90%. Из­бы­ток во­дя­но­го па­ра над океа­на­ми пе­ре­но­сит­ся на кон­ти­нен­ты воз­душ­ны­ми по­то­ка­ми. Ко­ли­че­ст­во во­дя­но­го па­ра, пе­ре­но­си­мо­го в А. с океа­нов на кон­ти­нен­ты, рав­но объ­ё­му сто­ка рек, впа­даю­щих в океа­ны.

Движение воздуха

Зем­ля име­ет ша­ро­об­раз­ную фор­му, по­это­му к её вы­со­ким ши­ро­там при­хо­дит го­раз­до мень­ше сол­неч­ной ра­диа­ции, чем к тро­пи­кам. Вслед­ст­вие это­го ме­ж­ду ши­ро­та­ми воз­ни­ка­ют боль­шие тем­пе­ра­тур­ные кон­т­расты. На рас­пре­де­ле­ние темп-ры в су­ще­ст­вен­ной ме­ре влия­ет так­же вза­им­ное рас­по­ло­же­ние океа­нов и кон­ти­нен­тов. Из-за боль­шой мас­сы океа­нич. вод и вы­со­кой те­п­ло­ём­ко­сти во­ды се­зон­ные ко­ле­ба­ния темп-ры по­верх­но­сти океа­на зна­чи­тель­но мень­ше, чем су­ши. В свя­зи с этим в сред­них и вы­со­ких ши­ро­тах темп-ра воз­ду­ха над океа­на­ми ле­том за­мет­но ни­же, чем над кон­ти­нен­та­ми, а зи­мой – вы­ше.

Не­оди­на­ко­вый ра­зо­грев А. в раз­ных об­лас­тях зем­но­го ша­ра вы­зы­ва­ет не­од­но­род­ное по про­стран­ст­ву рас­пре­де­ле­ние ат­мо­сфер­но­го дав­ле­ния. На уров­не мо­ря рас­пре­де­ле­ние дав­ле­ния ха­рак­те­ри­зу­ет­ся от­но­си­тель­но низ­ки­ми зна­че­ния­ми вбли­зи эк­ва­то­ра, уве­ли­че­ни­ем в суб­тро­пи­ках (по­ясá вы­со­ко­го дав­ле­ния) и по­ни­же­ни­ем в сред­них и вы­со­ких ши­ро­тах. При этом над ма­те­ри­ка­ми вне­тро­пич. ши­рот дав­ле­ние зи­мой обыч­но по­вы­ше­но, а ле­том по­ни­же­но, что свя­за­но с рас­пре­де­ле­ни­ем темп-ры. Под дей­ст­ви­ем гра­ди­ен­та дав­ле­ния воз­дух ис­пы­ты­ва­ет ус­ко­ре­ние, на­прав­лен­ное от об­лас­тей с вы­со­ким дав­ле­ни­ем к об­лас­тям с низ­ким, что при­во­дит к пе­ре­ме­ще­нию масс воз­ду­ха. На дви­жу­щие­ся воз­душ­ные мас­сы дей­ст­ву­ют так­же от­кло­няю­щая си­ла вра­ще­ния Зем­ли (си­ла Ко­рио­ли­са), си­ла тре­ния, убы­ваю­щая с вы­со­той, а при кри­во­ли­ней­ных тра­ек­то­ри­ях и цен­тро­беж­ная си­ла. Боль­шое зна­че­ние име­ет тур­бу­лент­ное пе­ре­ме­ши­ва­ние воз­ду­ха (см. Тур­бу­лент­ность в ат­мос­фе­ре).

С пла­не­тар­ным рас­пре­де­ле­ни­ем дав­ле­ния свя­за­на слож­ная сис­те­ма воз­душ­ных те­че­ний (об­щая цир­ку­ля­ция ат­мо­сфе­ры). В ме­ри­дио­наль­ной плос­ко­сти в сред­нем про­сле­жи­ва­ют­ся две или три ячей­ки ме­ри­дио­наль­ной цир­ку­ля­ции. Вбли­зи эк­ва­то­ра на­гре­тый воз­дух под­ни­ма­ет­ся и опус­ка­ет­ся в суб­тро­пи­ках, об­ра­зуя ячей­ку Хэд­ли. Там же опус­ка­ет­ся воз­дух об­рат­ной ячей­ки Фер­ре­ла. В вы­со­ких ши­ро­тах час­то про­сле­жи­ва­ет­ся пря­мая по­ляр­ная ячей­ка. Ско­ро­сти ме­ри­дио­наль­ной цир­ку­ля­ции по­ряд­ка 1 м/с или мень­ше. Из-за дей­ст­вия си­лы Ко­рио­ли­са в боль­шей час­ти А. на­блю­да­ют­ся зап. вет­ры со ско­ро­стя­ми в сред­ней тро­по­сфе­ре ок. 15 м/с. Су­ще­ст­ву­ют срав­ни­тель­но ус­той­чи­вые сис­те­мы вет­ров. К ним от­но­сят­ся пас­са­ты – вет­ры, дую­щие от поя­сов вы­со­ко­го дав­ле­ния в суб­тро­пи­ках к эк­ва­то­ру с за­мет­ной вост. со­став­ляю­щей (с во­сто­ка на за­пад). Дос­та­точ­но ус­той­чи­вы мус­соны – воз­душ­ные те­че­ния, имею­щие чёт­ко вы­ра­жен­ный се­зон­ный ха­рак­тер: они ду­ют с океа­на на ма­те­рик ле­том и в про­ти­во­по­лож­ном на­прав­ле­нии зи­мой. Осо­бен­но ре­гу­ляр­ны мус­со­ны Ин­дий­ско­го ок. В сред­них ши­ро­тах дви­же­ние воз­душ­ных масс име­ет в осн. зап. на­прав­ле­ние (с за­па­да на вос­ток). Это зо­на атмо­сфер­ных фрон­тов, на ко­то­рых воз­ни­ка­ют круп­ные вих­ри – ци­кло­ны и ан­ти­ци­кло­ны, ох­ва­ты­ваю­щие мн. сот­ни и да­же ты­ся­чи ки­ло­мет­ров. Ци­кло­ны воз­ни­ка­ют и в тро­пи­ках; здесь они от­ли­ча­ют­ся мень­ши­ми раз­ме­ра­ми, но очень боль­ши­ми ско­ро­стя­ми вет­ра, дос­ти­гаю­ще­го ура­ган­ной си­лы (33 м/с и бо­лее), т. н. тро­пи­че­ские ци­кло­ны. В Ат­лан­ти­ке и на вос­то­ке Ти­хо­го ок. они на­зы­вают­ся ура­га­на­ми, а на за­па­де Ти­хо­го ок. – тай­фу­на­ми. В верх­ней тро­по­сфе­ре и ниж­ней стра­то­сфе­ре в об­лас­тях, раз­де­ляю­щих пря­мую ячей­ку ме­ри­дио­наль­ной цир­ку­ля­ции Хэд­ли и об­рат­ную ячей­ку Фер­ре­ла, час­то на­блю­да­ют­ся срав­ни­тель­но уз­кие, в сот­ни ки­ло­мет­ров ши­ри­ной, струй­ные те­че­ния с рез­ко очер­чен­ны­ми гра­ни­ца­ми, в пре­де­лах ко­то­рых ве­тер дос­ти­га­ет 100–150 и да­же 200 м/с.

Климат и погода

Раз­ли­чие в ко­ли­че­ст­ве сол­неч­ной ра­диа­ции, при­хо­дя­щей на раз­ных ши­ро­тах к раз­но­об­раз­ной по фи­зич. свой­ст­вам зем­ной по­верх­но­сти, оп­ре­де­ля­ет мно­го­об­ра­зие кли­ма­тов Зем­ли. От эк­ва­то­ра до тро­пич. ши­рот темп-ра воз­ду­ха у зем­ной по­верх­но­сти в ср. 25–30 °C и ма­ло ме­ня­ет­ся в те­че­ние го­да. В эк­ва­то­ри­аль­ном поя­се обыч­но вы­па­да­ет мно­го осад­ков, что соз­да­ёт там ус­ло­вия из­бы­точ­но­го ув­лаж­не­ния. В тро­пич. поя­сах ко­ли­че­ст­во осад­ков умень­ша­ет­ся и в ря­де об­лас­тей ста­но­вит­ся очень ма­лым. Здесь рас­по­ла­га­ют­ся об­шир­ные пус­ты­ни Зем­ли.

В суб­тро­пич. и сред­них ши­ро­тах темп-ра воз­ду­ха зна­чи­тель­но ме­ня­ет­ся в те­че­ние го­да, при­чём раз­ни­ца ме­ж­ду темп-ра­ми ле­та и зи­мы осо­бен­но ве­ли­ка в уда­лён­ных от океа­нов об­лас­тях кон­ти­нен­тов. Так, в не­ко­то­рых рай­онах Вост. Си­би­ри го­до­вая ам­пли­ту­да темп-ры воз­ду­ха дос­ти­га­ет 65 °C. Ус­ло­вия ув­лаж­не­ния в этих ши­ро­тах весь­ма раз­но­об­раз­ны, за­ви­сят в осн. от ре­жи­ма об­щей цир­ку­ля­ции А. и су­ще­ст­вен­но ме­ня­ют­ся от го­да к го­ду.

В по­ляр­ных ши­ро­тах темп-ра ос­та­ёт­ся низ­кой в те­че­ние все­го го­да, да­же при на­ли­чии её за­мет­но­го се­зон­но­го хо­да. Это спо­соб­ст­ву­ет ши­ро­ко­му рас­про­стра­не­нию ле­до­во­го по­кро­ва на океа­нах и су­ше и мно­го­лет­не­мёрз­лых по­род, за­ни­маю­щих в Рос­сии св. 65% её пло­ща­ди, в осн. в Си­би­ри.

За по­след­ние де­ся­ти­ле­тия ста­ли всё бо­лее за­мет­ны из­ме­не­ния гло­баль­но­го кли­ма­та. Темп-ра по­вы­ша­ет­ся боль­ше в вы­со­ких ши­ро­тах, чем в низ­ких; боль­ше зи­мой, чем ле­том; боль­ше но­чью, чем днём. За 20 в. ср.-го­до­вая темп-ра воз­ду­ха у зем­ной по­верх­но­сти в Рос­сии вы­рос­ла на 1,5–2 °C, при­чём в отд. рай­онах Си­би­ри на­блю­да­ет­ся по­вы­ше­ние на неск. гра­ду­сов. Это свя­зы­ва­ет­ся с уси­ле­ни­ем пар­ни­ко­во­го эф­фек­та вслед­ст­вие рос­та кон­цен­тра­ции ма­лых га­зо­вых при­ме­сей.

По­го­да оп­ре­де­ля­ет­ся ус­ло­вия­ми цир­ку­ля­ции А. и гео­гра­фич. по­ло­же­ни­ем ме­ст­но­сти, она наи­бо­лее ус­той­чи­ва в тро­пи­ках и наи­бо­лее из­мен­чи­ва в сред­них и вы­со­ких ши­ро­тах. Бо­лее все­го по­го­да ме­ня­ет­ся в зо­нах сме­ны воз­душ­ных масс, обу­слов­лен­ных про­хо­ж­де­ни­ем ат­мо­сфер­ных фрон­тов, ци­кло­нов и ан­ти­ци­кло­нов, не­су­щих осад­ки и уси­ле­ние вет­ра. Дан­ные для про­гно­за по­го­ды со­би­ра­ют­ся на на­зем­ных ме­тео­стан­ци­ях, мор­ских и воз­душ­ных су­дах, с ме­тео­ро­ло­гич. спут­ни­ков. См. так­же Ме­тео­ро­ло­гия.

Оптические, акустические и электрические явления в атмосфере

При рас­про­стра­не­нии элек­тро­маг­нит­но­го из­лу­че­ния в А. в ре­зуль­та­те реф­рак­ции, по­гло­ще­ния и рас­сея­ния све­та воз­ду­хом и разл. час­ти­ца­ми (аэ­ро­золь, кри­стал­лы льда, ка­п­ли во­ды) воз­ни­ка­ют раз­но­об­раз­ные оп­тич. яв­ле­ния: ра­ду­га, вен­цы, га­ло, ми­раж и др. Рас­сея­ние све­та обу­слов­ли­ва­ет ви­ди­мую вы­со­ту не­бес­но­го сво­да и го­лу­бой цвет не­ба. Даль­ность ви­ди­мо­сти пред­ме­тов оп­ре­де­ля­ет­ся ус­ло­вия­ми рас­про­стра­не­ния све­та в А. (см. Ат­мо­сфер­ная ви­ди­мость). От про­зрач­но­сти А. на разл. дли­нах волн за­ви­сят даль­ность свя­зи и воз­мож­ность об­на­ру­же­ния объ­ек­тов при­бо­ра­ми, в т. ч. воз­мож­ность ас­тро­но­мич. на­блю­де­ний с по­верх­но­сти Зем­ли. Для ис­сле­до­ва­ний оп­тич. не­од­но­род­но­стей стра­то­сфе­ры и ме­зо­сфе­ры важ­ную роль иг­ра­ет яв­ле­ние су­ме­рек. Напр., фо­то­гра­фи­ро­ва­ние су­ме­рек с кос­мич. ап­па­ра­тов по­зво­ля­ет об­на­ру­жи­вать аэ­ро­золь­ные слои. Осо­бен­но­сти рас­про­стра­не­ния элек­тро­маг­нит­но­го из­лу­че­ния в А. оп­ре­де­ля­ют точ­ность ме­то­дов дис­тан­ци­он­но­го зон­ди­ро­ва­ния её па­ра­мет­ров. Все эти во­про­сы, как и мн. дру­гие, изу­ча­ет ат­мо­сфер­ная оп­ти­ка. Реф­рак­ция и рас­сея­ние ра­дио­волн обу­слов­ли­ва­ют воз­мож­но­сти ра­дио­приё­ма (см. Рас­про­стра­не­ние ра­дио­волн).

Рас­про­стра­не­ние зву­ка в А. за­ви­сит от про­стран­ст­вен­но­го рас­пре­де­ле­ния темп-ры и ско­ро­сти вет­ра (см. Ат­мо­сфер­ная аку­сти­ка). Оно пред­став­ля­ет ин­те­рес для зон­ди­ро­ва­ния А. дис­танц. ме­то­да­ми. Взры­вы за­ря­дов, за­пус­кае­мых ра­ке­та­ми в верх­нюю А., да­ли бо­га­тую ин­фор­ма­цию о сис­те­мах вет­ров и хо­де темп-ры в стра­то­сфе­ре и ме­зо­сфе­ре. В ус­той­чи­во стра­ти­фи­ци­ро­ван­ной А., ко­гда темп-ра па­да­ет с вы­со­той мед­лен­нее адиа­ба­ти­че­ско­го гра­ди­ен­та (9,8 К/км), воз­ни­ка­ют т. н. внут­рен­ние вол­ны. Эти вол­ны мо­гут рас­про­стра­нять­ся вверх в стра­то­сфе­ру и да­же в ме­зо­сфе­ру, где они за­ту­ха­ют, спо­соб­ст­вуя уси­ле­нию вет­ра и тур­бу­лент­но­сти.

От­ри­ца­тель­ный за­ряд Зем­ли и обу­с­лов­лен­ное им элек­трич. по­ле А. вме­сте с элек­три­че­ски за­ря­жен­ны­ми ио­но­сфе­рой и маг­ни­то­сфе­рой соз­да­ют гло­баль­ную элек­трич. цепь. Важ­ную роль при этом иг­ра­ет об­ра­зо­ва­ние об­ла­ков и гро­зо­во­го элек­три­че­ст­ва. Опас­ность гро­зо­вых раз­ря­дов вы­зва­ла не­об­хо­ди­мость раз­ра­бот­ки ме­то­дов гро­зо­за­щи­ты зда­ний, со­ору­же­ний, ли­ний элек­тро­пе­ре­дач и свя­зи. Осо­бую опас­ность это яв­ле­ние пред­став­ля­ет для авиа­ции. Гро­зо­вые раз­ря­ды вы­зы­ва­ют ат­мо­сфер­ные ра­дио­по­ме­хи, по­лу­чив­шие назв. ат­мо­сфе­ри­ков (см. Сви­стя­щие ат­мо­сфе­ри­ки). Во вре­мя рез­ко­го уве­ли­че­ния на­пря­жён­но­сти элек­трич. по­ля на­блю­да­ют­ся све­тя­щие­ся раз­ря­ды, воз­ни­каю­щие на ост­ри­ях и ост­рых уг­лах пред­ме­тов, вы­сту­паю­щих над зем­ной по­верх­но­стью, на отд. вер­ши­нах в го­рах и др. (Эль­ма ог­ни). А. все­гда со­дер­жит силь­но ме­няю­ще­еся в за­ви­си­мо­сти от кон­крет­ных ус­ло­вий ко­ли­че­ст­во лёг­ких и тя­жё­лых ио­нов, ко­то­рые оп­ре­де­ля­ют элек­трич. про­во­ди­мость А. Глав­ные ио­ни­за­то­ры воз­ду­ха у зем­ной по­верх­но­сти – из­лу­че­ние ра­дио­ак­тив­ных ве­ществ, со­дер­жа­щих­ся в зем­ной ко­ре и в А., а так­же кос­мич. лу­чи. См. так­же Ат­мо­сфер­ное элек­три­чест­во.

Влияние человека на атмосферу

В те­че­ние по­след­них сто­ле­тий про­ис­хо­дил рост кон­цен­тра­ции пар­ни­ко­вых га­зов в А. вслед­ст­вие хо­зяйств. дея­тель­но­сти че­ло­ве­ка. Про­цент­ное со­дер­жа­ние уг­ле­ки­сло­го га­за воз­рос­ло с 2,86 10–2 две­сти лет на­зад до 3,8·10–2 в 2005, со­дер­жа­ние ме­та­на – с 0,7· 10–4 при­мер­но 300–400 лет на­зад до 1,8·10–4 в нач. 21 в.; ок. 20% в при­рост пар­ни­ко­во­го эф­фек­та за по­след­нее сто­ле­тие да­ли фре­о­ны, ко­то­рых прак­ти­че­ски не бы­ло в А. до сер. 20 в. Эти ве­ще­ст­ва при­зна­ны раз­ру­ши­те­ля­ми стра­то­сфер­но­го озо­на, и их про­изводство за­пре­ще­но Мон­ре­аль­ским про­то­ко­лом 1987. Рост кон­цен­тра­ции уг­ле­ки­сло­го га­за в А. вы­зван сжи­га­ни­ем всё воз­рас­таю­щих ко­ли­честв уг­ля, неф­ти, га­за и др. ви­дов уг­ле­род­но­го то­п­ли­ва, а так­же све­де́­ни­ем ле­сов, в ре­зуль­та­те че­го умень­ша­ет­ся по­гло­ще­ние уг­ле­ки­сло­го га­за пу­тём фо­то­син­те­за. Кон­цен­тра­ция ме­та­на уве­ли­чи­ва­ет­ся с рос­том до­бы­чи неф­ти и га­за (за счёт его по­терь), а так­же при рас­ши­ре­нии по­се­вов ри­са и уве­ли­че­нии по­го­ло­вья круп­но­го ро­га­то­го ско­та. Всё это спо­соб­ст­ву­ет по­те­п­ле­нию кли­ма­та.

Для из­ме­не­ния по­го­ды раз­ра­бо­та­ны ме­то­ды ак­тив­но­го воз­дей­ст­вия на ат­мо­сфер­ные про­цес­сы. Они при­ме­ня­ют­ся для за­щи­ты с.-х. рас­те­ний от гра­до­би­тия пу­тём рас­сеи­ва­ния в гро­зо­вых об­ла­ках спец. реа­ген­тов. Су­ще­ст­ву­ют так­же ме­то­ды рас­сея­ния ту­ма­нов в аэ­ро­пор­тах, за­щи­ты рас­те­ний от за­мо­роз­ков, воз­дей­ст­вия на об­ла­ка с це­лью уве­ли­че­ния осад­ков в нуж­ных мес­тах или для рас­сея­ния об­ла­ков в мо­мен­ты мас­со­вых ме­ро­прия­тий.

Изучение атмосферы

Све­де­ния о фи­зич. про­цес­сах в А. по­лу­ча­ют пре­ж­де все­го из ме­тео­ро­ло­гических на­блю­де­ний, ко­то­рые про­во­дят­ся гло­баль­ной се­тью по­сто­ян­но дей­ст­вую­щих ме­тео­ро­ло­гич. стан­ций и по­стов, рас­по­ло­жен­ных на всех кон­ти­нен­тах и на мн. ост­ро­вах. Еже­днев­ные на­блю­де­ния да­ют све­де­ния о темп-ре и влаж­но­сти воз­ду­ха, ат­мо­сфер­ном дав­ле­нии и осад­ках, об­лач­но­сти, вет­ре и др. На­блю­де­ния за сол­неч­ной ра­диа­ци­ей и её пре­об­ра­зо­ва­ния­ми про­во­дят­ся на ак­ти­но­мет­рич. стан­ци­ях. Боль­шое зна­че­ние для изу­че­ния А. име­ют се­ти аэ­ро­ло­гич. стан­ций, на ко­то­рых при по­мо­щи ра­дио­зон­дов вы­пол­ня­ют­ся ме­тео­ро­ло­гич. из­ме­ре­ния до выс. 30–35 км. На ря­де стан­ций про­во­дят­ся на­блю­де­ния за ат­мо­сфер­ным озо­ном, элек­трич. яв­ле­ния­ми в А., хи­мич. со­ста­вом воз­ду­ха.

Дан­ные на­зем­ных стан­ций до­пол­ня­ют­ся на­блю­де­ния­ми на океа­нах, где дей­ст­ву­ют «су­да по­го­ды», по­сто­ян­но на­хо­дя­щие­ся в оп­ре­де­лён­ных рай­онах Ми­ро­во­го ок., а так­же ме­тео­ро­ло­гич. све­де­ния­ми, по­лу­чае­мы­ми с н.-и. и др. су­дов.

Всё боль­ший объ­ём све­де­ний об А. в по­след­ние де­ся­ти­ле­тия по­лу­ча­ют с по­мо­щью ме­тео­ро­ло­гич. спут­ни­ков, на ко­то­рых ус­та­нов­ле­ны при­бо­ры для фо­тогра­фи­ро­ва­ния об­ла­ков и из­ме­ре­ния по­то­ков ульт­ра­фио­ле­то­вой, ин­фра­крас­ной и мик­ро­вол­но­вой ра­диа­ции Солн­ца. Спут­ни­ки по­зво­ля­ют по­лу­чать све­де­ния о вер­ти­каль­ных про­фи­лях темп-ры, об­лач­но­сти и её во­до­за­па­се, эле­мен­тах ра­ди­ац. ба­лан­са А., о темп-ре по­верх­но­сти океа­на и др. Ис­поль­зуя из­ме­ре­ния реф­рак­ции ра­дио­сиг­на­лов с сис­те­мы на­ви­гац. спут­ни­ков, уда­ёт­ся оп­ре­де­лять в А. вер­ти­каль­ные про­фи­ли плот­но­сти, дав­ле­ния и темп-ры, а так­же вла­го­со­дер­жа­ния. С по­мо­щью спут­ни­ков ста­ло воз­мож­ным уточ­нить ве­ли­чи­ну сол­неч­ной по­сто­ян­ной и пла­не­тар­но­го аль­бе­до Зем­ли, стро­ить кар­ты ра­ди­ац. ба­лан­са сис­те­мы Зем­ля – А., из­ме­рять со­дер­жа­ние и из­мен­чи­вость ма­лых ат­мо­сфер­ных при­ме­сей, ре­шать мн. др. за­да­чи фи­зи­ки ат­мо­сфе­ры и мо­ни­то­рин­га ок­ру­жаю­щей сре­ды.

Источник: bigenc.ru

Атмосфера, свойства, строение, состав.

 

 

Атмосфера – это газовая оболочка, окружающая планету Земля, удерживаемая вокруг нее силой гравитации.

 

Атмосфера Земли, характеристики и свойства

Структура, строение и слои атмосферы: тропосфера, стратосфера, озоновый слой, мезосфера, термосфера, экзосфера

Состав атмосферы. Газы и другие вещества в атмосфере

Загрязнение атмосферы. Выбросы в атмосферу

 

Атмосфера Земли, характеристики и свойства, значение для жизни:

Атмосфера – это газовая оболочка, окружающая планету Земля, удерживаемая вокруг нее силой гравитации. Свое название она получила от двух древнегреческих слов: ἀτμός – «пар» и σφαῖρα – «сфера»). Пределами ее считаются непосредственно поверхность Земли и межпланетное пространство, но последняя граница весьма условна, т.к. не имеет четкой линии. Оболочка из газов, окружающая планету Земля, простирается вверх от поверхности Земли на сотни километров.

В астрономии атмосферой принято считать газовое пространство, окружающее любое небесное тело и вращающееся вместе с ним вокруг своей оси. Атмосферу имеют практически все крупные небесные тела, особенно состоящие из газов или имеющие сходный с Землей планетный тип: Меркурий, Венера, Луна, Марс, Юпитер, Ио, Европа, Ганимед, Каллисто, Сатурн, Энцелада, Титан, Рея, Уран, Нептун, Тритон, Плутон и пр.

Удельная масса атмосферы Земли составляет 5,2×1018 килограмм, а высота около 1000 километров. Атмосфера Земли непостоянна, подвержена изменениями и основным их источником считается человек.

Ее ключевыми характеристиками являются:

– высокая динамичность – перемещение огромных масс воздуха во всех слоях, возникающие вследствие перепадов давления, обусловленных нагреванием газов;

– физическая неоднородность – включает ряд сфер и слоев, каждый из которых отличается своими физическими характеристиками;

– уязвимость к биологическим факторам – легко подвергается загрязнению вредными и избыточными веществами (газами, органическими и неорганическими частицами, биологическими молекулами и т.д.);

– атмосферное давление – физическая величина, создаваемая гравитационным притяжением воздуха к планете и уменьшающаяся по мере удаления от ее поверхности.

Одно из назначений атмосферы – защита Земли и всего живого на ней от разнообразных космических угроз. В ее слоях сгорают мелкие метеоры, а крупные распадаются на мелкие части, не способные нанести планете существенный вред. Присутствующий озоновый слой фильтрует вредное для обитателей Земли ультрафиолетовое солнечное излучение, преобразовывая его в безопасные для жизни тепло и свет. Также атмосфера позволяет поддерживать на поверхности планеты температуру, комфортную для жизни человека, обеспечивает круговорот воды и движение воздушных потоков, без которых невозможно создание необходимых природе влажности и температуры.

 

Структура, строение и слои атмосферы:

Оболочка Земли включает пять основных слоев, берущих свое начало от уровня моря (а иногда и ниже) и простирающихся до межпланетного пространства. В промежутке между ними расположены переходные зоны (промежуточные слои) – «паузы», где происходит изменение состава, плотности и температуры воздушных масс. Таких зон четыре, и вместе с ними атмосфера насчитывает девять слоев.

 

Тропосфера:

Тропосфера – это первый, самый нижний слой атмосферы – «придонный», в котором обитает все живое на планете: человек, животные, растения. Тропосфера простирается на несколько километров: возле полюсов его высота не превышает 8-10 км, а в районе экватора достигает 18 км. Такая разность в высоте атмосферы обусловлено центробежной силой Земли и тем, что ширина планеты неодинакова в разных ее частях (Земля имеет эллиптическую форму). Еще один фактор, влияющий на величину слоя – сезон, т.е. температурный режим. В теплое время года воздушные массы поднимаются выше, в холодное – опускаются к поверхности планеты, тем самым увеличивая или уменьшая ширину тропосферы.

Свое название слой получил от древнегреческих слов τρόπος  – «поворот, изменение» и σφαῖρα – «шар». Первая часть слова полностью соответствует основным критериям тропосферы – подвижности, изменчивости, динамичности, формирующих все те явления, которые принято называть «климат» и «погода». Это:

– образование облаков;

– циркуляция жидкости;

– образование циклонов, антициклонов;

– генерация ветров.

Тропосфера – самый тяжелый слой, т.к. в нем содержится 80% массы атмосферы, 50% всех газов и практически вся влага, что позволяет обитателям тропосферы «дышать». Удерживает он и тепло, сохраняя поглощаемые Землей солнечные лучи, поэтому при удалении от ее поверхности понижаются и давление, и температура. Причем температура понижается на 0,5-0,7 градуса Цельсия каждые 100 метров. Также с набором высоты усиливается ветер: на каждый километр высоты его скорость растет на 2-3 км/с. Примечательно, что снижение температуры характерно только для нижнего слоя (тропосферы), во всех же иных она растет по мере приближения к верхним границам.

На нижней границе, возле литосферы, находится еще один барьер: приземной пограничный слой, самый важный для циркуляции всей атмосферы. Именно здесь происходит отдача тепловой энергии и излучения планетой, создаются перепады давления и ветряные потоки, позже разделяемые и направляемые неровностями поверхности (горами, скалами и т.д.).

Верхним пределом тропосферы является тропопауза – промежуточный барьер между тропосферой и следующим слоем атмосферы – стратосферой.

Нормальным давлением у нижней границы тропосферы принято считать показатель в 1000 миллибар, который максимально приближен к эталону – 1013 миллибар (одна «атмосфера»). У верхнего слоя давление составляет уже 200 мБар, а при удалении от уровня моря на 45 км падает до 1 мБара.

За тропосферой и тропопаузой следует следующий слой атмосферы – стратосфера. В тропопаузе прекращается снижение температуры воздуха с возрастанием высоты.

 

Стратосфера:

Стратосфера располагается на высоте от около 10 км (на северном и южном полюсах) или от около 18 км (в районе экватора) до 50 км от уровня моря. Название происходит от древнегреческого слова stratum, означающего «настил, слой». Давление на нижней границе в 10 раз меньше, чем у поверхности Земли, а на верхней – меньше почти в 1000 раз. Сама стратосфера очень разрежена, влага в ней практически отсутствует. Температура слоя повышается по мере приближения к мезосфере: на границе с тропопаузой она достигает -56,5 градусов Цельсия, а ближе к верхнему приделу составляет от 0 до +0,8 градусов Цельсия.

За стратосферой выше следует стратопауза, а за последней – мезосфера. В стратопаузе нагрев воздушных масс прекращается, и температура перестает подниматься.

В границах стратосферы располагается еще один слой – озоновый, выполняющий важную функцию защиты поверхности планеты от разрушающего действия ультрафиолетовых лучей.

 

Озоновый слой:

Озоновый слой представляет собой «границу жизни» на Земле: за его пределами все основные показатели – температура, давление, космическое излучение – уничтожают все живые организмы, включая даже самые стойкие бактериологические формы.

Появление этого барьера в атмосфере обусловлено двум факторами:

– кислородом, выделяемым всеми представителями растительного мира планеты;

– ультрафиолетом, с которым кислород ступает в химические реакции. В результате химических реакций образуется газ О3 – озон, по иронии, созданный из разрушающих ультрафиолетовых волн и защищающий от них же. Его примечательной характеристикой считается способность отражать солнечные лучи, создавая вокруг себя тепло.

 

Мезосфера:

Мезосфера – малый по размерам слой, расположенный на высоте от 40-50 до 80-90 км от уровня моря. Он характеризуется:

– низкой температурой – на его верхней границе показатели достигают -80 градусов Цельсия, в то время как на нижней границе – около 0 градусов Цельсия;

– чрезвычайно малым давлением газов (ниже поверхностного в десятки тысяч раз);

– отсутствием движения воздушных масс, обусловленного их низкой (почти нулевой) подъемной силой.

Эти же факторы влияют на изучение слоя: отсутствие летательных аппаратов, способных двигаться в подобных условиях, не позволяет тщательно исследовать мезосферу. Однако доподлинно известно, что именно она защищает Землю от падения на нее различных космических тел, чаще всего метеоров. Небольшие из них полностью сгорают, рассыпаясь в пыль, а крупные иногда достигают поверхности планеты, но уже «выгоревшие», не способные нанести ей существенный ущерб.

За мезосферой следует мезопауза, а за последней – термосфера. В мезопаузе находится температурный минимум, который составляет около -100 °C.

 

Термосфера:

Нижний предел термосферы располагается на высоте приблизительно от 80-90 км. Здесь же (на высоте 100 км) проходит условная граница между поверхностью планеты и космическим пространством – линия Кармана, за которой газы, свойственные атмосфере, практически отсутствуют. Считается, что именно от этой линии берет свое начало четвертый слой атмосферы – термосфера. Ее границы простираются до 800 км от уровня моря, а температура в высшей точке достигает 1700 градусов Цельсия.

Космические летательные аппараты, созданные из металла, который начинает плавиться при температуре 1560 градусов Цельсия, улетая в открытое космическое пространство и возвращаясь на Землю, легко преодолевают этот слой. Это связано с тем, что термосфера имеет чрезвычайно низкое содержание газов и соответственно низкое давление, которое в миллион раз меньше, чем на поверхности Земли. Частицы этого слоя обладают высокой энергией, но т.к. расстояние между частицами огромно, любые космические объекты, летающие в этом слое, оказываются практически в вакууме. Именно поэтому термосфера выбрана для размещения спутников и орбитальных станций.

Под действием солнечной радиации и космического излучения  в термосфере происходит ионизация воздуха и образуются т.н. «полярные сияния».

За термосферой следует термопауза, а за последней – экзосфера.

В термопаузе поглощение солнечного излучения незначительно и температура практически не меняется с высотой. Здесь также происходят полярные сияния.

 

Экзосфера:

Экзосфера – последний, верхний слой атмосферы, берущий начало на высоте около 800 км от уровня моря. Название он получил от древнегреческого «экзо», означающего «вне, снаружи». Это самый разреженный слой, состоящий из атомов самого легкого химического элемента – водорода. Встречаются также атомы азота и кислорода, но они чрезмерно ионизированы ультрафиолетовым излучением. В экзосфере также происходят полярные сияния.

Экзосфера самый большой по размерам слой атмосферы, ее границы простираются на сотни километров вглубь космоса и верхней считается геокорона Земли. Атомы газов здесь – большая редкость, их концентрация в миллионы раз ниже, чем в земном воздухе.

 

Состав атмосферы. Газы и другие вещества в атмосфере:

Все слои атмосферы состоят из газов, но в одних их концентрация выше, а в других меньше. Воздух, которым дышат все земные существа, включает их большую атмосферную часть – почти 80%. Элементов, имеющих наибольшую концентрацию, в атмосфере 12, но в том или ином объемном соотношении в атмосфере присутствует почти вся таблица Менделеева. Однако такой состав был не всегда.

Первыми газами, окутывающими Землю и свойственные всем газовым гигантам, были гелий и водород. Эти вещества – остатки туманности, образовавшей самую яркую звезду нашей галактики – Солнце, в большом количестве оседающие вокруг гравитационного поля планеты.

Сама же планета хранила множество других веществ:

– аммиак;

– метан;

– углекислый газ;

– серу.

Их выбросы в формирующуюся атмосферу Земли обусловлены извержениями вулканов и разломами, столкновениями подвижных тектонических плит. Следствием освобождения из недр аммиака и метана стал их распад и образование других соединений, одним из которых стал азот, сегодня занимающий 78% всего состава атмосферы. Сделать же ее (атмосферу) пригодной для жизни смог кислород.

Его появление происходило несколькими способами: раскаленная мантия Земли в больших объемах выбрасывала скопившиеся в ней газы, а водяной пар от извержения вулканов распадался под действием прямых солнечных лучей на водород и кислород. Но задержка кислорода в атмосфере была невозможна – он вступал в дальнейшие химические реакции с различными веществами и видоизменялся.

Накопление достаточного количества кислорода в атмосфере Земли стало возможным с появлением биологических организмов, выделяющих его в процессе своей жизнедеятельности. Это позволило:

– достигнуть концентрации кислорода в 21% всего за 2 миллиарда лет;

– существенно снизить концентрацию углекислого газа за счет использования последнего микроорганизмами как составляющего собственной костной ткани;

– сформировать озоновый слой, защищающий живые организма от разрушительного ультрафиолета.

Кроме основных газов: водорода, кислорода и углекислого газа, атмосфера включает и благородные газы:

– гелий;

– аргон;

– неон;

– криптон;

– ксенон;

– радон.

Благородные газы образуются в результате ядерных процессов, протекающих в глубинах земной коры, и выделяются в атмосферу из микротрещин в литосфере или при извержении вулканов.

Присутствует в атмосфере и вода, чей объем зависит от широты: у полюсов концентрация составляет 0,2%, на экваторе достигает 2,5%. Также присутствуют различные оксиды азота, пропан, радон. В малых объемах в атмосфере представлено широкое разнообразие других веществ:

– бром;

– йод;

– озон;

– хлор;

– оксид серы;

– аммиак;

– монооксид углерода;

– соляная кислота;

– плавиковая кислота;

– бромоводород;

– иодоводород;

– и пр. различные частицы взвешенных твердых и жидких веществ.

 

Источник: xn--80aaafltebbc3auk2aepkhr3ewjpa.xn--p1ai


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.