Характеристика слоев атмосферы таблица


Характеристика слоев атмосферы таблица

Тропосфера

Её верхняя граница находится на высоте 8—10 км в полярных, 10—12 км в умеренных и 16—18 км в тропических широтах; зимой ниже, чем летом. Нижний, основной слой атмосферы содержит более 80 % всей массы атмосферного воздуха и около 90 % всего имеющегося в атмосфере водяного пара. В тропосфере сильно развиты турбулентность и конвекция, возникают облака, развиваются циклоны и антициклоны. Температура убывает с ростом высоты со средним вертикальным градиентом 0,65°/100 м

Тропопауза

Переходный слой от тропосферы к стратосфере, слой атмосферы, в котором прекращается снижение температуры с высотой.

Стратосфера

Слой атмосферы, располагающийся на высоте от 11 до 50 км. Характерно незначительное изменение температуры в слое 11—25 км (нижний слой стратосферы) и повышение её в слое 25—40 км от −56,5 до 0,8 °С (верхний слой стратосферы или область инверсии). Достигнув на высоте около 40 км значения около 273 К (почти 0 °C), температура остаётся постоянной до высоты около 55 км. Эта область постоянной температуры называется стратопаузой и является границей между стратосферой и мезосферой.


Стратопауза

Мезосфера

Мезопауза

Переходный слой между мезосферой и термосферой. В вертикальном распределении температуры имеет место минимум (около —90 °C).

Линия Кармана

Высота над уровнем моря, которая условно принимается в качестве границы между атмосферой Земли и космосом. Линия Кармана находится на высоте 100 км над уровнем моря.

Граница атмосферы Земли

Принято считать, что граница атмосферы Земли и ионосферы находится на высоте 118 километров. Это показывает анализ параметров движения высокоэнергетических частиц, перемещающихся в атмосфере и ионосфере.

Термосфера

Термопауза

Область атмосферы прилегающая сверху к термосфере. В этой области поглощение солнечного излучения незначительно и температура фактически не меняется с высотой.

 

Экзосфера (сфера рассеяния)

Экзосфера — зона рассеяния, внешняя часть термосферы, расположенная выше 700 км. Газ в экзосфере сильно разрежен, и отсюда идёт утечка его частиц в межпланетное пространство (диссипация).


До высоты 100 км атмосфера представляет собой гомогенную хорошо перемешанную смесь газов. В более высоких слоях распределение газов по высоте зависит от их молекулярных масс, концентрация более тяжёлых газов убывает быстрее по мере удаления от поверхности Земли. Вследствие уменьшения плотности газов температура понижается от 0 °C в стратосфере до −110 °C в мезосфере. Однако кинетическая энергия отдельных частиц на высотах 200—250 км соответствует температуре ~150 °C. Выше 200 км наблюдаются значительные флуктуации температуры и плотности газов во времени и пространстве.

На высоте около 2000—3500 км экзосфера постепенно переходит в так называемый ближнекосмический вакуум, который заполнен сильно разреженными частицами межпланетного газа, главным образом атомами водорода. Но этот газ представляет собой лишь часть межпланетного вещества. Другую часть составляют пылевидные час­тицы кометного и метеорного происхождения. Кроме чрезвычайно разреженных пылевидных частиц, в это пространство проникает электромагнитная и корпускулярная радиация солнечного и галактического происхождения.

На долю тропосферы приходится около 80 % массы атмосферы, на долю стратосферы — около 20 %; масса мезосферы — не более 0,3 %, термосферы — менее 0,05 % от общей массы атмосферы. На основании электрических свойств в атмосфере выделяют нейтросферу и ионосферу. В настоящее время считают, что атмосфера простирается до высоты 2000—3000 км.


В зависимости от состава газа в атмосфере выделяют гомосферу и гетеросферу. Гетеросфера — это область, где гравитация оказывает влияние на разделение газов, так как их перемешивание на такой высоте незначительно. Отсюда следует переменный состав гетеросферы. Ниже её лежит хорошо перемешанная, однородная по составу часть атмосферы, называемая гомосфера. Граница между этими слоями называется турбопаузой, она лежит на высоте около 120 км.

Источник: meteoinfo.ru

Атмосфера Земли представляет собой газовую оболочку нашей планеты. Ее нижняя граница проходит на уровне земной коры и гидросферы, а верхняя переходит в околоземную область космического пространства. Атмосфера содержит около 78% азота, 20% кислорода, до 1% аргона, углекислого газа, водорода, гелия, неона и некоторых других газов.

Данная земная оболочка характеризуется четко выраженной слоистостью. Слои атмосферы определяются вертикальным распределением температуры и различной плотностью газов на разных ее уровнях. Различают такие слои атмосферы Земли: тропосфера, стратосфера, мезосфера, термосфера, экзосфера. Отдельно выделяют ионосферу.


sloi_atmosfery

До 80% всей массы атмосферы составляет тропосфера – нижний приземный слой атмосферы. Тропосфера в полярных поясах расположена на уровне до 8-10 км над земной поверхностью, в тропическом поясе — максимально до 16-18 км. Между тропосферой и вышележащим слоем стратосферой находится тропопауза – переходный слой. В тропосфере температура снижается по мере увеличения высоты, аналогично с высотой уменьшается атмосферное давление. Средний градиент температуры в тропосфере составляет 0,6°С на 100 м. Температура на разных уровнях данной оболочки определяется особенностями поглощения солнечного излучения и эффективностью конвекции. Почти вся деятельность человека осуществляется в тропосфере. Самые высокие горы не выходят за пределы тропосферы, только воздушный транспорт может пересекать на небольшую высоту верхнюю границу данной оболочки и находиться в стратосфере. Большая доля водяного пара содержится в тропосфере, что обусловливает формирование почти всех облаков. Также в тропосфере сконцентрированы практически все аэрозоли (пыль, дым, т.д.), образующиеся на земной поверхности.


пограничном нижнем слое тропосферы выражены суточные колебания температуры, влажности воздуха, скорость ветра обычно снижена (она возрастает с повышением высоты). В тропосфере наблюдается изменчивое расчленение толщи воздуха на воздушные массы в горизонтальном направлении, отличающиеся по ряду характеристик в зависимости от пояса и местности их формирования. На атмосферных фронтах – границах между воздушными массами – образуются циклоны и антициклоны, определяющие погоду на определенной территории в течение конкретного промежутка времени.

Стратосфера является слоем атмосферы между тропосферой и мезосферой. Пределы данного слоя составляют от 8-16 км до 50-55 км над поверхностью Земли. В стратосфере газовый состав воздуха приблизительно таков же, как и в тропосфере. Отличительная особенность – уменьшение концентрации водяного пара и повышение содержания озона. Озоновый слой атмосферы, защищающий биосферу от агрессивного воздействия ультрафиолетового света, находится на уровне от 20 до 30 км. В стратосфере температура повышается с высотой, причем температурные значение определяются солнечным излучением, а не конвекцией (передвижениями воздушных масс), как в тропосфере. Нагревание воздуха стратосферы обусловлено поглощением ультрафиолетового излучения озоном.

Над стратосферой простирается мезосфера до уровня 80 км. Этот слой атмосферы характеризуется тем, что температура по мере увеличения высоты понижается от 0° С до — 90° С. Это наиболее холодная область атмосферы.


Выше мезосферы находится термосфера до уровня 500 км. От границы с мезосферой до экзосферы температура меняется примерно от 200 К до 2000 К. До уровня 500 км плотность воздуха убывает в несколько сот тысяч раз. Относительный состав атмосферных составляющих термосферы аналогичен приземному слою тропосферы, но с увеличением высоты большее количество кислорода переходит в атомарное состояние. Определенная доля молекул и атомов термосферы находится в ионизированном состоянии и распределены в нескольких слоях, они объединяются понятием ионосфера. Характеристики термосферы варьируют в большом диапазоне в зависимости от географической широты, величины солнечной радиации, времени года и суток.

Верхний слой атмосферы – экзосфера. Это самый разреженный слой атмосферы. В экзосфере длины свободного пробега частиц настолько огромны, что частицы могут свободно удаляться в межпланетное пространство. Масса экзосферы составляет одну десятимиллионную от общей массы атмосферы. Нижняя граница экзосферы – уровень 450-800 км, а верхней границей считается область, где концентрация частиц такая же, как в космическом пространстве, — несколько тысяч километров от поверхности Земли. Экзосфера состоит из плазмы – ионизированного газа. Также в экзосфере находятся радиационные пояса нашей планеты.

Видео презентация — слои атмосферы Земли:


Похожие материалы:

 

Источник: geografya.ru

Атмосфера неоднородна как в вертикальном, так и в гори­зонтальном направлении. Как уже говорилось выше, по вер­тикали она делится на ряд сфер и слоев, отличающихся по своим физическим характеристикам. По горизонтали, особенно в своей нижней части, она расчленяется на неоднородные массы воздуха. Ближайший к поверхности земли слой воздуха называется тропосферой.
Тропосфера. Физические свойства тропосферы в значительной степени определяются влиянием земной поверхности. Нижней границей тропосферы является поверхность земли, а верхняя находится в среднем на высотах 8—17 км. Высота тропосферы зависит главным образом от географической ши­роты. Наибольшая ее высота наблюдается в экваториальной зоне: здесь она достигает 16—18 км.


д приполюсными и смежными областями верхняя граница тропосферы лежит в среднем на уровне 9—10 км. В средних широтах высота тро­посферы колеблется от 6—8 до 14—16 км, составляя в сред­нем 10—12 км.
Верхняя граница тропосферы испытывает сезонные измене­ния: зимой она ниже, летом выше. Еще значительнее измене­ния высоты тропосферы, зависящие от характера атмосферных процессов. Нередко в течение суток высота верхней границы тропосферы над данным пунктом или районом изменяется даже на несколько километров. Наблюдения показывают, что изменения вертикальной протяженности тропосферы связаны с изменением температуры воздуха.
Тропосфера обладает рядом физических свойств, отличаю­щих ее от всех выше лежащих слоев воздуха. В тропосфере сосредоточена значительная часть массы земной атмосферы и почти весь содержащийся в ней водяной пар. Кроме того, от по­верхности земли до верхней границы тропосферы температура понижается в среднем на 0,6° на каждые 100 м поднятия. Воз­дух в тропосфере нагревается и охлаждается преимущественно от поверхности земли. В соответствии с притоком солнечной энергии температура понижается от экватора к полюсам. Так, средняя температура воздуха у поверхности земли на экваторе достигает 26° выше нуля, а в полярных областях 23° ниже нуля. В то же время над экватором в верхней тропосфере тем­пература равна —75, —80°, а в полярных областях —60, —65°,
Преобладающим горизонтальным переносом воздуха в тро­посфере является западный.

орость ветра в тропосфере, как правило, с высотой возрастает, достигая максимума на уровне верхней ее границы. Горизонтальный перенос сопровождается вертикальными перемещениями воздуха и турбулентным дви­жением, обеспечивающими непрерывное перемешивание воз­духа во всей тропосфере. Вследствие подъема и опускания больших объемов воздуха образуются и рассеиваются облака, выпадают и прекращаются осадки. В тропосфере развиваются процессы, обусловливающие погоду и ее изменения.
Выше тропосферы расположена стратосфера. От тропо­сферы она отделена переходным слоем, который называется тропопаузой.
Так же как и высота верхней границы тропосферы, высота тропопаузы изменяется от сезона к сезону и ото дня ко дню в зависимости от процессов, развивающихся в тропосфере. Над холодными массами воздуха она располагается очень низко, а над теплыми — высоко. Даже в средних широтах зимой тропопауза нередко находится на высотах 8—9 км, а летом — на высотах 13—15 км. Колебания высоты тропопаузы вызваны рядом причин, среди которых большую роль играет перенос холодных или теплых масс воздуха и охлаждение или нагре­вание воздуха, обусловленное его вертикальными перемеще­ниями. При повышении температуры в тропосфере тропопауза повышается, при понижении температуры опускается.
Стратосфера. По вертикальному делению атмосферы под стратосферой подразумевается слой воздуха, ограниченный «снизу тропопаузой, а сверху уровнем 50—60 км.
По физическим свойствам стратосфера резко отличается от ниже лежащей сферы уже тем, что распределение температуры с высотой здесь иное, чем в тропосфере.

ратосфера очень бедна водяным паром. Здесь не происходят бурные процессы облакообразозания сопровождающиеся выпадением осадков.
Совсем еще недавно предполагали, что стратосфера является сравнительно спокойной средой и что здесь в верти­кальном направлении не происходит перемешивание воздуха. Считали также, что температура в стратосфере формируется под действием только лучистого равновесия, т. е. при равенстве поглощения и отражения солнечной радиации.
Новые данные, полученные с помощью радиометеорологи­ческих приборов и метеорологических ракет, показали, что в стратосфере, как и в верхней тропосфере, осуществляется интенсивная циркуляция воздуха со значительными измене­ниями температуры и ветра. Здесь, как и в тропосфере, наблюдаются значительные вертикальные перемещения, неупо­рядоченные (турбулентные) движения при сильных горизон­тальных воздушных течениях. Все это является результатом неоднородного распределения температуры.
В табл. 2 приведены данные о температуре в верхней тропосфере и стратосфере над различными широтами север­ного полушария.

T_2
Из данных табл. 2 следует, что в тропосфере на высотах 5 и 9 км разность температур между низкими и высокими широтами достигает 30—35°, причем от низких широт к высо­ким температура постепенно понижается. В стратосфере распределение температуры несколько иное. На уровне 16 км наиболее низкие температуры (—76, —80°) наблюдаются в экваториальной зоне, в средних широтах температура равна —51, —61°, а к высоким широтам она вновь понижается до —64, —68°. В стратосфере экваториальной зоны температура с высотой повышается, достигая на уровне 30 км —46, —50°, а в арктической зоне на этом же уровне наблюдаются темпе­ратуры около —67, —75°.
К лету распределение температуры претерпевает значитель­ные изменения. Как следует из табл. 3, в тропосфере на уров­нях 5 и 9 км температура от низких широт к высоким, как и зимой, понижается, однако разность ее составляет уже около 15°, что объясняется летним прогреванием воздуха в средних и особенно высоких широтах. На уровне 16 км от экваториальной зоны до 80° с. ш. температура повышается до —42, —43°, и даже на уровне 30 км в Арктике она выше, чем в экваториальной зоне.

T_3
Из приведенных данных о распределении температуры по высоте в различных широтных зонах следует, что в верхних слоях стратосферы экваториальной зоны температура воздуха от зимы к лету заметно не изменяется, а в арктической зоне, наоборот, эти изменения весьма значительны.
В табл. 4 приведены величины разностей температур между летом и зимой на разных уровнях в тропосфере и стратосфере и в разных широтных зонах северного полушария.

T_4
Как видно из данных табл. 4, величины разностей темпера­тур между летом и зимой возрастают от низких широт к высо­ким. На уровне 30 км над полюсом они достигают максимума (40°). То же происходит и в южном полушарии, с той лишь разницей, что в Антарктике на этом уровне величины разно­стей достигают 50—55°.
Мезосфера. Наблюдениями с помощью метеорологиче­ских ракет и косвенными способами установлено, что общее повышение температуры, наблюдающееся в стратосфере, про­должается до высот 50—60 км. На этих высотах температура воздуха повышается до 10—20° выше нуля. Выше этого слоя она вновь понижается и у верхней границы мезосферы (около 80 км) составляет —75, —90°. Далее вновь происходит повы­шение температуры с высотой.
На рис. 6 изображены кривые изменения средней темпера­туры воздуха с высотой между поверхностью земли и уровнем 90 км для трех широт: 80, 50 и 20°. Кривые показывают не­однородность строения атмосферы над указанными широтами не только в разные, но в одни и те же сезоны. Легко видеть, что даже в одном сезоне и на одном уровне разности темпе­ратур воздуха между различными широтами превышают 20—30°. При этом неоднородность особенно значительна в слое низких температур в стратосфере (18—30 км), в слое макси­мальных температур в средней мезосфере (50—60 км) и в слое низких температур в верхней мезосфере (75—85 км).

Сезонным распределением температуры обусловлена довольно сложная система воздушных течений в стратосфере и мезосфере.
На рис. 7 приведены кривые изменения средней скорости ветра с высотой между поверхностью земли и уровнем 90 км для тех же широтных зон, что и на рис. 6. Кривые показывают значительное различие в распределении скорости и направле­ния ветра в январе и июле. Как видно на рисунке, севернее 20° с. ш. в январе преобладают западные ветры со средними максимальными скоростями более 340 км/час. В июле запад­ные ветры господствуют в тропосфере и нижней стратосфере до высот 18—20 км, а выше они переходят в восточные (на рисунке скорости показаны со знаком минус). В нижней термо­сфере ветры вновь становятся западными. Наоборот, зимой выше уровня мезопаузы западные ветры переходят в восточные.

На тех высотах, где падение температуры с высотой сме­няется изотермией или инверсией, обнаружены облака.
В верхней стратосфере на высотах 20—26 км при опреде­ленных условиях (очевидно, при резко выраженных инверсиях) возникают тонкие и неплотные, так называемые перла­мутровые облака, состоящие из кристалликов льда и пере­охлажденных капелек воды (рис. 8).

Облака обнаружены и на высоте около 80 км, т. е. там, где понижение температуры воздуха с высотой прекращается и начинается ее повышение (см. рис. 6). Здесь под инверсион­ным слоем в сумерки летом при ясной погоде наблюдаются блестящие тонкие облака, ярко освещенные солнцем, находящимся за горизонтом. Эти облака названы серебристыми (рис. 9).

Предполагается, что серебристые облака состоят из ледяных кристаллов. Они, как и перламутровые облака, по-видимому, возникают благодаря скоплению водяного пара над слоем инверсии температуры (И. А. Хвостиков). Роль ядер конденса­ции здесь, вероятно, играет космическая пыль. Уровень рас­положения серебристых облаков, очевидно, определяется за­держивающим слоем, образующимся в связи с повышением температуры с высотой при переходе из мезосферы в выше лежащий слой — термосферу.
Наблюдениями за серебристыми облаками установлено, что летом на их уровне ветры обладают большой изменчивостью. Скорости ветра колеблются в больших пределах (от 50—60 до нескольких сотен километров в час).
Термосфера. Выше мезосферы расположена термосфера, для которой характерно повышение температуры с высотой. По данным, полученным с помощью ракет и косвенных мето­дов определения температуры, установлено, что в термосфере уже на уровне 150 км температура воздуха достигает 220—240°, а на уровне 200 км она превышает 500°. Выше тем­пература продолжает расти и на верхней границе термосферы, на уровне 700—800 км, превышает 1000°. Однако для высоких слоев атмосферы понятие «температура» приобретает иной смысл.
Известно, что температура газа определяется средней ско­ростью движения молекул. В нижней, плотной части атмо­сферы столкновение молекул происходит часто и кинетическая энергия их в среднем одна и та же. Если молекулы воздуха поглощают большое количество лучистой энергии, то они при­обретают большую кинетическую энергию и мгновенно проис­ходит обмен энергией между молекулами. Поэтому они обла­дают одинаковой кинетической энергией, а следовательно, и температурой.
В высоких слоях атмосферы, где плотность воздуха очень мала, столкновения между молекулами, находящимися на больших расстояниях, происходят реже. При поглощении энер­гии скорость молекул в промежутке между столкновениями их сильно изменяется; к тому же молекулы легких газов имеют большую скорость, чем молекулы тяжелых газов. Поэтому тем­пература этих газов может быть различной.
Чрезвычайно высокие температуры в термосфере свидетель­ствуют лишь о том, что в этой весьма неплотной среде редкие молекулы перемещаются с огромной скоростью. Тело, находя­щееся здесь, не ощущает даже температур 1000—2000°. В тер­мосфере сгорает, не долетая до поверхности земли, основная часть метеоритов.
Наиболее интересной особенностью атмосферы выше 60 км является ее ионизация, т. е. наличие в ней огромного количе­ства электрически заряженных частиц — ионов. Атмосфера становится электропроводной вследствие ионизации в тех слу­чаях, когда наблюдается наибольшая концентрация ионов. Так как ионизация характерна для термосферы, последнюю назы­вают также и ионосферой. Ионизация воздуха протекает под действием ультрафиолетовой и корпускулярной радиации Солнца.
Процесс ионизации наиболее интенсивно происходит в мощ­ных слоях, ограниченных высотами 60—80 и 320—400 км. В этих слоях существуют оптимальные условия для ионизация. Здесь плотность воздуха заметно больше, чем в верхней атмо­сфере, а поступление ультрафиолетовой и корпускулярной радиации Солнца достаточно для процесса ионизации.
По интенсивности процесса ионизации ионосфера делится на ряд слоев. Один из них (слой Е) находится на высоте около 100 км, слои F1 и F2— соответственно на высотах 150—180 и 220—400 км. В слое 60—80 км, т. е. в верхней мезосфере (слой D), процесс ионизации происходит слабее.
Отличительной особенностью ионосферы является ее влияние на распространение радиоволн. В ионизированных слоях радиоволны преломляются, отражаются и поглощаются.
Слой D распространяется до уровня 80 км. Здесь длинные радиоволны поглощаются больше, чем отражаются, что объяс­няется большей плотностью этого слоя. Остальные ионосферные слои (Е, F1 и F2) отражают преимущественно средние и корот­кие радиоволны, особенно слой F2, располагающийся на уровне 220—400 км.
Сильное поглощение коротких радиоволн в ионосфере вы­зывает нарушение радиосвязи. Это явление связано с измене­нием солнечной активности. На Солнце временами возникают солнечные пятна, сопровождающиеся усилением ультрафиоле­тового излучения. При этих процессах увеличивается электрон­ная плотность ионосферы и поглощение радиоволн в дневные часы, приводящее к нарушению нормальной работы радио­связи на коротких волнах. Объясняется это тем, что при уси­лении излучения Солнца заряженные частицы (корпускулы) под влиянием магнитного поля Земли отклоняются в сторону высоких широт. Войдя в атмосферу, корпускулы усиливают ионизацию газов настолько, что начинается их свечение. Так возникают полярные сияния, имеющие вид красивых многокра­сочных дуг и драпри, загорающихся в ночном небе преимуще­ственно в высоких широтах Земли. Полярные сияния сопро­вождаются сильными магнитными бурями.
Путем фотографирования полярных сияний из двух пунк­тов, находящихся на расстоянии нескольких десятков кило­метров, с большой точностью определяется высота сияния. Обычно нижний край полярных сияний располагается на вы­соте около 100 км, верхняя их часть обнаруживается на высоте нескольких сотен километров, а иногда на уровне около 1000 км.
Несмотря на выяснение природы полярных сияний, остается еще много нерешенных вопросов. До сих пор неизвестны при­чины многообразия форм полярных сияний, игры красок и пр.
При сильных магнитных бурях полярное сияние становится видимым и в средних широтах, а в редких случаях даже в тро­пической зоне. Интенсивное сияние, наблюдавшееся 21 — 22 января 1957 г., было видно почти во всех южных районах СССР.
В 50-х годах с помощью ракет и искусственных спутников Земли впервые удалось произвести зондирование ионосферы. Процессы, происходящие в ионосфере, изучаются и косвенными методами — по интенсивности и характеру таких явлений, как свечение ночного неба, полярные сияния и др.
Экзосфера — сфера рассеяния — самая верхняя часть атмосферы, расположена выше 800 км. Она изучена менее всего. По данным, полученным с помощью косвенных методов наблюдений и теоретических расчетов, температура в экзосфере с высотой возрастает предположительно до 2000°. В отличие от нижней ионосферы, в экзосфере газы настолько разрежены, что частицы их, двигаясь с огромными скоростями, почти не встречаются друг с другом.
Еще сравнительно недавно предполагали, что условная гра­ница атмосферы лежит на высоте около 1000 км. Однако по торможению искусственных спутников Земли установлено, что на высотах 700—800 км в 1 см3 содержится до 160 тысяч поло­жительных ионов атомарного кислорода и азота. Это указы­вает, что разреженные слои атмосферы простираются до вы­соты 2000 км и более.
На рис. 10 представлен схематический вертикальный разрез атмосферы; по вертикальной шкале отложены высота и давле­ние воздуха, сплошная кривая характеризует изменение тем­пературы воздуха с высотой. На соответствующих высотах изображены главнейшие явления, наблюдающиеся в атмо­сфере, а также максимальные высоты, достигнутые радиозондами и другими средствами зондирования атмосферы.

Газовый хвост Земли. При высоких температурах на ус­ловной границе атмосферы скорости молекул достигают при­близительно 12 км/сек. При таких скоростях частицы газов . постепенно уходят из области действия земного притяжения в межпланетное пространство. Это осуществляется в течение длительного времени. Так, например, частицы водорода, по­падая на высоты около 300 км, переходят в межпланетное про­странство в течение нескольких лет, а частицы гелия — в тече­ние миллионов лет. Более тяжелые газы уходят за пределы земной атмосферы еще медленнее.
Исследование ночного свечения неба показывает, что форма воздушной оболочки Земли не шарообразна: рукав чрезвы­чайно разреженных газов наподобие хвоста кометы тянется от внешних слоев земной атмосферы в плоскости эклиптики в неосвещенной стороне нашей планеты. Судя по спектру, газо­вый хвост Земли состоит из кислорода и азота.
Газовый хвост Земли, по-видимому, образуется в резуль­тате давления солнечных лучей на верхние слои атмосферы.
Всего несколько лет назад предполагали, что за пределами земной атмосферы, в межпланетном пространстве, газы очень разрежены и концентрация частиц в них не превышает несколь­ких единиц в 1 см3. В настоящее время установлено, что меж­планетное пространство является сравнительно плотной средой с концентрацией, равной сотням частиц в 1 см3. Однако меж­планетная среда, как и природа газового хвоста Земли, еще не достаточно изучена.

  • ← Методы исследования атмосферы
  • Энергия солнца →

Источник: collectedpapers.com.ua


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.