Значение законов кеплера в астрономии


Значение законов кеплера в астрономии

  • Разное

Астрономия конца XVI века отмечает столкновение двух моделей нашей Солнечной системы: геоцентрическая система Птолемея – где центром вращения всех объектов является Земля, и гелиоцентрическая система Коперника – где Солнце является центральным телом.

Значение законов кеплера в астрономии

И хотя Коперник был ближе к истинной природе Солнечной системы, его работа имела недостатки. Основным из этих недостатков являлось утверждение, что планеты вращаются вокруг Солнца по круговым орбитам. С учетом этого, модель Коперника практически настолько же не согласовывалась с наблюдениями, как и система Птолемея. Польский астроном стремился исправить данное расхождение при помощи дополнительного движения планеты по кругу, центр которого уже двигался вокруг Солнца — эпицикл. Однако, расхождения в большей своей части не были устранены.


Значение законов кеплера в астрономии

В начале XVII века немецкий астроном Иоганн Кеплер, изучая систему Николая Коперника, а также анализируя результаты астрономических наблюдений датчанина Тихо Браге, вывел основные законы относительно движения планет. Они были названы как Три закона Кеплера.

Будучи великолепным наблюдателем, Тихо Браге за много лет составил объёмный труд по наблюдению планет и сотен звёзд, причём точность его измерений была существенно выше, чем у всех предшественников.

Первый закон Кеплера (закон эллипсов)

Планеты Солнечной системы движутся по эллиптическим орбитам. В одном из фокусов которой находится Солнце.

Значение законов кеплера в астрономии

Согласно первому закону Кеплера, все планеты нашей системы движутся по замкнутой кривой, называемой эллипсом. Наше светило располагается в одном из фокусов эллипса. Всего их два: это две точки внутри кривой, сумма расстояний от которых до любой точки эллипса постоянна.

После длительных наблюдений ученый смог выявить, что орбиты всех планет нашей системы располагаются почти в одной плоскости. Некоторые небесные тела двигаются по орбитам-эллипсам, близким к окружности. И только Плутон с Марсом двигаются по более вытянутым орбитам. Исходя из этого, первый закон Кеплера получил название закона эллипсов.

Второй закон Кеплера (закон площадей)


Радиус-вектор планеты описывает в равные промежутки времени равные площади.

Значение законов кеплера в астрономии

Второй закон Кеплера говорит о следующем: каждая планета перемещается в плоскости, проходящей через центр нашего светила. В одно и то же время радиус-вектор, соединяющий Солнце и исследуемую планету, описывает равные площади. Таким образом, ясно, что тела движутся вокруг желтого карлика неравномерно, а имея в перигелии максимальную скорость, а в афелии – минимальную.

На практике это видно по движению Земли. Ежегодно в начале января наша планета, во время прохождения через перигелий, перемещается быстрее. Из-за этого движение Солнца по эклиптике происходит быстрее, чем в другое время года. В начале июля Земля движется через афелий, из-за чего Солнце по эклиптике перемещается медленнее.

Третий закон Кеплера (гармонический закон)

Квадраты периодов обращения планет относятся как кубы больших полуосей их орбит.


Значение законов кеплера в астрономии

По третьему закону Кеплера, между периодом обращения планет вокруг светила и ее средним расстоянием от него устанавливается связь.  Третий закон Кеплера выполняется как для планет, так и для спутников, с погрешно­стью не более 1 %.

На основании этого закона можно вычис­лить продолжительность года (время полного оборота вокруг Солнца) любой планеты, если известно её расстояние до Солнца. И наобо­рот — по этому же закону можно рассчитать орбиту, зная период обращения.

Дальнейшее развитие

И хотя законы Кеплера имели относительно невысокую погрешность, все же они были получены эмпирическим способом. Теоретическое же обоснование отсутствовало. Данная проблема позже была решена Исааком Ньютоном, который в 1682-м году открыл закон всемирного тяготения.

Законы Кеплера стали важнейшим этапом в понимании и описании движения планет.

Видео



Источник: asteropa.ru

Тайна мироздания

Надо заметить, что астрономы конца XVI века еще не были уверены в том, как устроена Солнечная система, и разделялись на два лагеря: одни верили, что прав Птолемей и все планеты, Солнце, Луна и звезды вращаются вокруг неподвижной Земли. Другие же соглашались с Коперником и полагали, что именно Солнце является центром Вселенной, вокруг которого вращаются остальные небесные тела Солнечной системы. Около 1580 года датский астроном Тихо Браге выдвинул компромиссную версию: мол, все планеты, кроме Земли, вращаются вокруг Солнца, но Земля находится на особом положении — она неподвижно покоится в центре мира, заставляя крутиться вокруг себя Солнце и Луну. Так, геоцентрическая и гелиоцентрическая система мира объединились в гибридную геогелиоцентрическую. Но вопросы остались: как именно планеты вращаются, по какой траектории, с какой скоростью — этого точно никто не знал.

Как раз этими темами занялся Иоганн Кеплер. В 25 лет он написал книгу «Тайна мироздания» о шести известных тогда планетах — в ней он сопоставлял орбиты и «платоновы тела» и искал скрытую математическую гармонию Вселенной. Кеплер был настолько уверен в своей мистической теории, что тут же послал ее крупнейшим астрономам конца XVI века Галилео Галилею и Тихо Браге, и они хотя и отвергли фантазии юноши, но отметили его оригинальность и ум, а Галилей поддержал приверженность молодого ученого гелиоцентрической системе мира.
сле этого Кеплер вошел в научное сообщество и, осмелев, стал фонтанировать идеями. Одна из них совершенно не понравилась Галилею: молодой коллега утверждал, что Марс движется не по кругу, а по эллипсу. Известие о том, что все орбиты небесных тел — эллипсы, которое нам кажется аксиомой, не сразу было принято астрономами. Неравномерное движение Солнца, Луны и планет тогда объяснялось сложно: считалось, что планета равномерно движется по малому кругу, называемому эпициклом, центр которого, в свою очередь, движется по большому кругу, который называется деферентом.

«Я всегда ценил ум Кеплера — острый и свободный, пожалуй, даже слишком свободный, но способы мышления у нас совсем разные», — отзывался о Кеплере Галилей. А Тихо Браге пригласил молодого астронома к себе, и они десять лет плодотворно работали вместе. Следствием этого сотрудничества как раз и стали знаменитые три закона Кеплера.

Первый закон Кеплера

Многолетние наблюдения Браге показали: Марс движется по орбите, но это не окружность. Пытаясь найти объяснения этому загадочному факту, Иоганн Кеплер пришел к первому своему закону: «Каждая планета Солнечной системы обращается по эллипсу, в одном из фокусов которого находится Солнце».

Тут стоит пояснить, что такое фокусы. Эллипс, как вы можете представить, это замкнутая прямая на плоскости. Он симметричен и содержит внутри две оси, проходящие через центр: большую и малую. Оси можно разделить на полуоси, исходящие из центра (это будет радиус орбиты). Если нарисовать на больших полуосях две точки на одинаковом расстоянии от центра, это и будут фокусы. При этом сумма расстояний отрезков от фокусов до любой точки эллипса является постоянной величиной.


Значение законов кеплера в астрономии

Второй закон Кеплера

Второй закон Кеплера определил, как меняется скорость планеты при удалении или приближении к Солнцу. Оказалось, что чем дальше планета находится от Солнца, тем медленнее она движется. А по мере приближения к светилу скорость планеты увеличивается.

Значение законов кеплера в астрономии

Закон сформулирован так: радиус-вектор, соединяющий планету и Солнце, в равное время описывает равные площади. Радиус-вектор — это линия, соединяющая Солнце и планету, движущуюся по орбите. Проще понять этот закон с помощью наглядной схемы: закрашенные площади равны и проходятся за одинаковое время.

Третий закон Кеплера

Третий закон Кеплера позволяет рассчитать скорость планеты и период ее обращения вокруг Солнца. Он гласит: квадраты периодов обращения планет вокруг Солнца относятся как кубы больших полуосей орбит планет.

Значение законов кеплера в астрономии

T1 и T2 — периоды обращения двух планет вокруг Солнца, a1 и a2 — длины больших полуосей их орбит.

Гармония мира


Математическая красота Вселенной, о которой мечтал ученый, нашла неожиданное подтверждение: выяснилось, что соотношение большого и малого радиуса планет у всех планет Солнечной системы одинаково и совпадает с числом золотого сечения, погрешность составляет доли процента.

«Я выяснил, что все небесные движения, как в их целом, так и во всех отдельных случаях, проникнуты общей гармонией, правда, не той, которой я предполагал, но еще более совершенной», — писал о своих озарениях Кеплер. После его открытий представление о Земле как о центре Вселенной окончательно ушло из астрономии.

Несмотря на столь мощный вклад Иоганна Кеплера в развитие науки, его мать чуть было не сожгли на костре: в 1615 году она была обвинена в колдовстве, посажена на железную цепь в городских воротах и пять лет ожидала казни. Кеплеру пришлось лично защищать ее в суде, забросив астрономию, чтобы опровергнуть полсотни обвинений, в том числе связи с дьяволом, богохульство, порчу, некромантию и т. д. Мать удалось оправдать, но через полгода она умерла — в 1621 году. Кеплер прожил еще девять лет, успев выпустить свою завершающую книгу — «Гармония мира».

Вклад Кеплера в науку высоко оценил Альберт Эйнштейн.
н жил в эпоху, когда еще не было уверенности в существовании некоторой общей закономерности для всех явлений природы, — писал автор теории относительности. — Какой глубокой была у него вера в такую закономерность, если, работая в одиночестве, никем не поддерживаемый и не понятый, он на протяжении многих десятков лет черпал в ней силы для трудного и кропотливого эмпирического исследования движения планет и математических законов этого движения! Сейчас, когда эти законы уже установлены, трудно себе представить, сколько изобретательности, воображения и неустанного, упорного труда потребовалось, чтобы установить эти законы и со столь огромной точностью выразить их».

Математический секрет красоты

Теория струн, или Теория всего

Упавшее яблоко или плагиат: как Ньютон открыл закон всемирного тяготения

Источник: naukatv.ru

Иоганн Кеплер обладал чувством прекрасного. Всю свою сознательную жизнь он пытался доказать, что Солнечная система представляет собой некое мистическое произведение искусства. Сначала он пытался связать ее устройство с пятью правильными многогранниками классической древнегреческой геометрии. (Правильный многогранник — объемная фигура, все грани которой представляют собой равные между собой правильные многоугольники.) Во времена Кеплера было известно шесть планет, которые, как полагалось, помещались на вращающихся «хрустальных сферах».
плер утверждал, что эти сферы расположены таким образом, что между соседними сферами точно вписываются правильные многогранники. Между двумя внешними сферами — Сатурна и Юпитера — он поместил куб, вписанный во внешнюю сферу, в который, в свою очередь, вписана внутренняя сфера; между сферами Юпитера и Марса — тетраэдр (правильный четырехгранник) и т. д.* Шесть сфер планет, пять вписанных между ними правильных многогранников — казалось бы, само совершенство?

Увы, сравнив свою модель с наблюдаемыми орбитами планет, Кеплер вынужден был признать, что реальное поведение небесных тел не вписывается в очерченные им стройные рамки. По меткому замечанию современного британского биолога Дж. Холдейна (J. B. S. Haldane), «идея Вселенной как геометрически совершенного произведения искусства оказалась еще одной прекрасной гипотезой, разрушенной уродливыми фактами». Единственным пережившим века результатом того юношеского порыва Кеплера стала модель Солнечной системы, собственноручно изготовленная ученым и преподнесенная в дар его патрону герцогу Фредерику фон Вюртембургу. В этом прекрасно исполненном металлическом артефакте все орбитальные сферы планет и вписанные в них правильные многогранники представляют собой не сообщающиеся между собой полые емкости, которые по праздникам предполагалось заполнять различными напитками для угощения гостей герцога.


Лишь переехав в Прагу и став ассистентом знаменитого датского астронома Тихо Браге (Tycho Brahe, 1546–1601), Кеплер натолкнулся на идеи, по-настоящему обессмертившие его имя в анналах науки. Тихо Браге всю жизнь собирал данные астрономических наблюдений и накопил огромные объемы сведений о движении планет. После его смерти они перешли в распоряжение Кеплера. Эти записи, между прочим, имели большую коммерческую ценность по тем временам, поскольку их можно было использовать для составления уточненных астрологических гороскопов (сегодня об этом разделе ранней астрономии ученые предпочитают умалчивать).

Обрабатывая результаты наблюдений Тихо Браге, Кеплер столкнулся с проблемой, которая и при наличии современных компьютеров могла бы показаться кому-то трудноразрешимой, а у Кеплера не было иного выбора, кроме как проводить все расчеты вручную. Конечно же, как и большинство астрономов его времени, Кеплер уже был знаком с гелиоцентрической системой Коперника (см. Принцип Коперника) и знал, что Земля вращается вокруг Солнца, о чем свидетельствует и вышеописанная модель Солнечной системы. Но как именно вращается Земля и другие планеты? Представим проблему следующим образом: вы находитесь на планете, которая, во-первых, вращается вокруг своей оси, а во-вторых, вращается вокруг Солнца по неизвестной вам орбите. Глядя в небо, мы видим другие планеты, которые также движутся по неизвестным нам орбитам. Наша задача — определить по данным наблюдений, сделанных на нашем вращающемся вокруг своей оси вокруг Солнца земном шаре, геометрию орбит и скорости движения других планет. Именно это, в конечном итоге, удалось сделать Кеплеру, после чего, на основе полученных результатов, он и вывел три своих закона!

Первый закон** описывает геометрию траекторий планетарных орбит. Возможно, вы помните из школьного курса геометрии, что эллипс представляет собой множество точек плоскости, сумма расстояний от которых до двух фиксированных точек — фокусов — равна константе. Если это слишком сложно для вас, имеется другое определение: представьте себе сечение боковой поверхности конуса плоскостью под углом к его основанию, не проходящей через основание, — это тоже эллипс. Первый закон Кеплера как раз и утверждает, что орбиты планет представляют собой эллипсы, в одном из фокусов которых расположено Солнце. Эксцентриситеты (степень вытянутости) орбит и их удаления от Солнца в перигелии (ближайшей к Солнцу точке) и апогелии (самой удаленной точке) у всех планет разные, но все эллиптические орбиты роднит одно — Солнце расположено в одном из двух фокусов эллипса. Проанализировав данные наблюдений Тихо Браге, Кеплер сделал вывод, что планетарные орбиты представляют собой набор вложенных эллипсов. До него это просто не приходило в голову никому из астрономов.

Историческое значение первого закона Кеплера трудно переоценить. До него астрономы считали, что планеты движутся исключительно по круговым орбитам, а если это не укладывалось в рамки наблюдений — главное круговое движение дополнялось малыми кругами, которые планеты описывали вокруг точек основной круговой орбиты. Это было, я бы сказал, прежде всего философской позицией, своего рода непреложным фактом, не подлежащим сомнению и проверке. Философы утверждали, что небесное устройство, в отличие от земного, совершенно по своей гармонии, а поскольку совершеннейшими из геометрических фигур являются окружность и сфера, значит планеты движутся по окружности (причем это заблуждение мне и сегодня приходится раз за разом развеивать среди своих студентов). Главное, что, получив доступ к обширным данным наблюдений Тихо Браге, Иоганн Кеплер сумел перешагнуть через этот философский предрассудок, увидев, что он не соответствует фактам — подобно тому как Коперник осмелился убрать Землю из центра мироздания, столкнувшись с противоречащими стойким геоцентрическим представлениям аргументами, которые также состояли в «неправильном поведении» планет на орбитах.

Второй закон описывает изменение скорости движения планет вокруг Солнца. В формальном виде я его формулировку уже приводил, а чтобы лучше понять его физический смысл, вспомните свое детство. Наверное, вам доводилось на детской площадке раскручиваться вокруг столба, ухватившись за него руками. Фактически, планеты кружатся вокруг Солнца аналогичным образом. Чем дальше от Солнца уводит планету эллиптическая орбита, тем медленнее движение, чем ближе к Солнцу — тем быстрее движется планета. Теперь представьте пару отрезков, соединяющих два положения планеты на орбите с фокусом эллипса, в котором расположено Солнце. Вместе с сегментом эллипса, лежащим между ними, они образуют сектор, площадь которого как раз и является той самой «площадью, которую отсекает отрезок прямой». Именно о ней говорится во втором законе. Чем ближе планета к Солнцу, тем короче отрезки. Но в этом случае, чтобы за равное время сектор покрыл равную площадь, планета должна пройти большее расстояние по орбите, а значит скорость ее движения возрастает.

В первых двух законах речь идет о специфике орбитальных траекторий отдельно взятой планеты. Третий закон Кеплера позволяет сравнить орбиты планет между собой. В нем говорится, что чем дальше от Солнца находится планета, тем больше времени занимает ее полный оборот при движении по орбите и тем дольше, соответственно, длится «год» на этой планете. Сегодня мы знаем, что это обусловлено двумя факторами. Во-первых, чем дальше планета находится от Солнца, тем длиннее периметр ее орбиты. Во-вторых, с ростом расстояния от Солнца снижается и линейная скорость движения планеты.

В своих законах Кеплер просто констатировал факты, изучив и обобщив результаты наблюдений. Если бы вы спросили его, чем обусловлена эллиптичность орбит или равенство площадей секторов, он бы вам не ответил. Это просто следовало из проведенного им анализа. Если бы вы спросили его об орбитальном движении планет в других звездных системах, он также не нашел бы, что вам ответить. Ему бы пришлось начинать всё сначала — накапливать данные наблюдений, затем анализировать их и стараться выявить закономерности. То есть у него просто не было бы оснований полагать, что другая планетная система подчиняется тем же законам, что и Солнечная система.

Один из величайших триумфов классической механики Ньютона как раз и заключается в том, что она дает фундаментальное обоснование законам Кеплера и утверждает их универсальность. Оказывается, законы Кеплера можно вывести из законов механики Ньютона, закона всемирного тяготения Ньютона и закона сохранения момента импульса путем строгих математических выкладок. А раз так, мы можем быть уверены, что законы Кеплера в равной мере применимы к любой планетной системе в любой точке Вселенной. Астрономы, ищущие в мировом пространстве новые планетные системы (а открыто их уже довольно много), раз за разом, как само собой разумеющееся, применяют уравнения Кеплера для расчета параметров орбит далеких планет, хотя и не могут наблюдать их непосредственно.

Третий закон Кеплера играл и играет важную роль в современной космологии. Наблюдая за далекими галактиками, астрофизики регистрируют слабые сигналы, испускаемые атомами водорода, обращающимися по очень удаленным от галактического центра орбитам — гораздо дальше, чем обычно находятся звезды. По эффекту Доплера в спектре этого излучения ученые определяют скорости вращения водородной периферии галактического диска, а по ним — и угловые скорости галактик в целом (см. также Темная материя). Меня радует, что труды ученого, твердо поставившего нас на путь правильного понимания устройства нашей Солнечной системы, и сегодня, спустя века после его смерти, играют столь важную роль в изучении строения необъятной Вселенной.

Источник: elementy.ru

Первый закон Кеплера

Немецкий астроном пытался различными способами сохранить круговую орбиту движения планет, однако это не позволяло исправить расхождение с результатами наблюдений. Потому Кеплер прибегнул к эллиптическим орбитам. У каждой такой орбиты есть два так называемых фокуса. Фокусы – это две заданные точки, такие, что сумма расстояний от этих двух точек до любой точки эллипса является постоянной.

Иоганн Кеплер отметил, что планета движется по эллиптической орбите вокруг Солнца таким образом, что Солнце располагается в одном из двух фокусов эллипса, что и стало первым законом движения планет.

Второй закон Кеплера

Проведем радиус-вектор от Солнца, которое располагается в одном из фокусов эллипсоидной орбиты планеты, к самой планете. Тогда за равные промежутки времени данный радиус-вектор описывает равные площади на плоскости, в которой движется планета вокруг Солнца. Данное утверждение является вторым законом.

Третий закон Кеплера

Каждая орбита планеты имеет точку, ближайшую к Солнцу, которое называется перигелием. Точка орбиты, наиболее удаленная от Солнца, называется афелием. Отрезок, соединяющий эти две точки называется большой осью орбиты. Если разделить этот отрезок пополам, то получим большую полуось, которую чаще используют в астрономии.

Третий закон движения планет Кеплера звучит следующим образом:

Отношение квадрата периода обращения планеты вокруг Солнца к большой полуоси орбиты этой планеты является постоянным, и также равняется отношению квадрата периода обращения другой планеты вокруг Солнца к большой полуоси этой планеты.

Также иногда записывают другое отношение:

Дальнейшее развитие

И хотя законы Кеплера имели относительно невысокую погрешность (не более 1%), все же они были получены эмпирическим способом. Теоретическое же обоснование отсутствовало. Данная проблема позже была решена Исааком Ньютоном, который в 1682-м году открыл закон всемирного тяготения. Благодаря этому закону удалось описать подобное поведение планет. Законы Кеплера стали важнейшим этапом в понимании и описании движения планет.
Значение законов кеплера в астрономии

Источник: SpaceGid.com

Законы Кеплера

Долгое время считалось, что небесные тела движутся по круговым орбитам. Однако в 17 в. выяснилось, что на самом деле орбиты небесных тел отличаются от окружностей. Это открытие принадлежит Иоганну Кеплеру.hello_html_m508b950e.jpg

Иоганн КЕПЛЕР (1571–1630) – немецкий астроном. Родился в Вюртембурге. Начав с изучения богословия в Тюбингенской академии (позднее университет), увлекся математикой и астрономией. В 1600 году ученый по приглашению датского астронома Тихо Браге переехал в Прагу. Работы Кеплера основывались на наблюдениях, сделанных Тихо Браге.

Тихо Браге всю жизнь собирал данные астрономических наблюдений и накопил огромные объемы сведений о движении планет. После его смерти они перешли в распоряжение Кеплера. Кеплер знал, что существуют расхождения между предвычисленными и наблюдаемыми положениями планет. Применяя полученные данные для расчета движения небесных тел он сформулировал три эмпирических закона движения планет Солнечной системы.

Первый закон описывает траекторий планетарных орбит: планеты движутся по эллипсу, в одном из фокусов которого находится Солнце.

Справка: эллипс – вытянутая окружность, обладающая тем свойством, что существуют две точки (фокусы и ), для которых сумма расстояний до любой точки эллипса является постоянной величиной.

hello_html_m164ab770.gif

Отрезок , проходящий через фокусы эллипса называют большой осью данного эллипса. Отрезок , перпендикулярный большой оси эллипса, проходящий через центральную точку большой оси, называют малой осью эллипса. Точка пересечения осей называется центром эллипса. Расстояние от центра до самой удаленной точки эллипса называют большой полуосью и обозначают . Расстояние от центра до самой близкой точки эллипса называют малой полуосью и обозначают . Расстояние от цента эллипса до его фокуса называют фокальным расстоянием . Отношение называют эксцентриситет.

Эксцентриситет показывает степень вытянутости эллипса: чем c больше, тем больше эллипс отличается от окружности.

Ближайшую к Солнцу точку орбиты называют перигелий (греч.пери – возле, Гелиос – Солнце), а наиболее удаленную – афелий (греч. апо – вдали).

Большая полуось орбиты планеты – это среднее расстояние от Солнца. Большая полуось земной орбиты принята за единицу расстояния в астрономии и называется астрономической единицей.

1 а.е.=149600000 км.

Историческое значение первого закона Кеплера трудно переоценить. До него астрономы считали, что планеты движутся исключительно по круговым орбитам, а если это не укладывалось в рамки наблюдений – главное круговое движение дополнялось малыми кругами, которые планеты описывали вокруг точек основной круговой орбиты.

Второй закон описывает изменение скорости движения планет вокруг Солнца. Радиус-вектор планеты в равные промежутки времени описывает равные площади.

hello_html_m3b77429c.png

Справка: радиус-вектор – расстояние от одного фокуса до любой точки эллипса (например ).

Площади и равны. Орбиты и планета проходит за одинаковые промежутки времени. Но . Следовательно, вокруг Солнца планета движется неравномерно: линейная скорость планеты вблизи перигелия больше, чем вблизи афелия.

В первых двух законах речь идет о специфике орбитальных траекторий отдельно взятой планеты. Третий закон Кеплера позволяет сравнить орбиты планет между собой.

Квадраты сидерических периодов двух планет, обращающихся вокруг Солнца, относятся как кубы больших полуосей их орбит.

Справка: сидерический (звездный период) промежуток времени в течение которого планета совершает один полный оборот вокруг Солнца.

В третьем законе Кеплера говорится, что чем дальше от Солнца находится планета, тем больше времени занимает ее полный оборот при движении по орбите и тем дольше, соответственно, длится «год» на этой планете. Это обусловлено двумя факторами. Во-первых, чем дальше планета находится от Солнца, тем длиннее периметр ее орбиты. Во-вторых, с ростом расстояния от Солнца снижается и линейная скорость движения планеты.

В качестве одной из сравниваемых планет обычно принимают Землю.

В своих законах Кеплер просто констатировал факты, изучив и обобщив результаты наблюдений. Но несмотря на это законы Кеплера в равной мере применимы к любой планетной системе, к движению естественных и искусственных спутников планет.

Список литературы:

Левитан Е.П. Астрономия: учебник для 11 классов общеобразовательных учреждений – М.: Просвещение, 1994. – 207 с.

Б.А. Воронцов-Вельяминов. Астрономия: учебник для 10 класса средней школы – М.: Просвещение, 1983. – 143 с.

Порфирьев В.В. Астрономия: учебник для 11 класса общеобразовательных учреждений – М.: Просвещение, 2003. – 175 с.

Б.А. Воронцов-Вельяминов, Е.К, Страут Астрономия: учебник для 11 класса общеобразовательных учебных заведений – М.: Дрофа, 2003. – 224 с.

https://ru.wikipedia.org/wiki/Кеплер,_Иоганн

https://ru.wikipedia.org/wiki/Эллипс

Источник: infourok.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.