Солнечный ветер это астрономия


Солнечный ветер это астрономияВ конце 40-х годов американский астроном С. Форбуш обнаружил непонятное явление. Измеряя интенсив­ность космических лучей, Форбуш заметил, что она значительно снижается при возрастании солнечной ак­тивности и совсем резко падает во время магнитных бурь.

Это представлялось довольно странным. Скорее, мож­но было ожидать обратного. Ведь Солнце само является поставщиком космических лучей. Поэтому, казалось бы, чем выше активность нашего дневного светила, тем больше частиц оно должно выбрасывать в окружающее пространство.

Оставалось предположить, что возрастание солнечной активности влияет на земное магнитное поле таким об­разом, что оно начинает отклонять частицы космических лучей — отбрасывать их. Путь к Земле как бы запи­рается.

Объяснение казалось логичным. Но, увы, как выяс­нилось вскоре, оно было явно недостаточным. Подсчеты, проделанные физиками, неопровержимо свидетельство­вали о том, что изменение физических условий только в непосредственной близости от Земли не может вызвать эффекта такого масштаба, какой наблюдается в дей­ствительности. Очевидно, должны существовать и какие-то другие силы, препятствующие проникновению космических лучей в солнечную систему, и притом такие, которые возрастают с увеличением солнечной активности.


Тогда-то и возникло предположение, что виновни­ками загадочного эффекта являются потоки заряженных частиц, вырывающиеся с поверхности Солнца и про­низывающие пространство солнечной системы. Этот свое­образный «солнечный ветер» и очищает межпланетную среду, «выметая» из нее частицы космических лучей.

Солнечный ветер это астрономияВ пользу подобной гипотезы говорили также явления, наблюдающиеся в кометах. Как известно, кометные хво­сты всегда направлены от Солнца. Вначале это обстоя­тельство связывали со световым давлением солнечных лучей. Однако в середине текущего столетия было уста­новлено, что лишь световое давление не может вызывать всех явлений, происходящих в кометах. Расчеты пока­зали, что для образования и наблюдаемого отклонения кометных хвостов необходимо воздействие не только фотонов, но и частиц вещества. Кстати, такие частицы могли бы возбуждать происходящее в кометных хвостах свечение ионов.


Собственно говоря, о том, что Солнце выбрасывает потоки заряженных частиц — корпускул, было известно и до этого. Однако предполагалось, что такие потоки носят эпизодический характер. Их возникновение астро­номы связывали с появлением вспышек и пятен. Но ко­метные хвосты направлены в противоположную от Солн­ца сторону всегда, а не только в периоды усиления сол­нечной активности. Значит, и корпускулярная радиация, заполняющая пространство солнечной системы, должна существовать постоянно. Она усиливается с возраста­нием солнечной активности, но существует всегда.

Таким образом, околосолнечное пространство непре­рывно обдувается солнечным ветром. Из чего же состоит этот ветер и при каких условиях он возникает?

Познакомимся с самым внешним слоем солнечной ат­мосферы — «короной». Эта часть атмосферы нашего дневного светила необычайно разрежена. Даже в непо­средственной близости от Солнца ее плотность состав­ляет всего около одной стомиллионной доли плотности земной атмосферы. Это значит, что в каждом куби­ческом сантиметре околосолнечного пространства содер­жится всего несколько сотен миллионов частиц короны. Но так называемая «кинетическая температура» короны, определяемая по скорости движения частиц, весьма вели­ка. Она достигает миллиона градусов. Поэтому корональный газ полностью ионизован и представляет собой смесь протонов, ионов различных элементов и свободных элект­ронов.

Недавно появилось сообщение о том, что в составе солнечного ветра обнаружено присутствие ионов гелия. Это обстоятельство проливает спет на тот механизм, с помощью которого происходит выброс  заряженных


частиц с поверхности Солнца. Если бы солнечный ветер состоял только из электронов и протонов, то еще можно было бы предполагать, что он образуется за счет чисто тепловых процессов и представляет собой нечто вроде пара, образующегося над поверхностью кипящей воды. Однако ядра атомов гелия в четыре раза тяжелее про­тонов и поэтому маловероятно, чтобы они могли выбра­сываться вследствие испарения. Скорее всего образова­ние солнечного ветра связано с действием магнитных сил. Улетая от Солнца, облака плазмы как бы уносят с собой и магнитные поля. Именно эти поля и служат тем своеобразным «цементом», который «скрепляет» воедино частицы с различными массами и зарядами.

Наблюдения и вычисления, проведенные астронома­ми, показали, что по мере удаления от Солнца плотность короны постепенно уменьшается. Но, оказывается, в районе орбиты Земли она еще заметно отличается от нуля. В этой области солнечной системы на каждый ку­бический сантиметр пространства приходится от ста до тысячи корональных частиц. Другими словами, наша планета находится внутри солнечной атмосферы и, если хотите, мы вправе называть себя не только жителями Земли, но и жителями атмосферы Солнца.Солнечный ветер это астрономия


Если вблизи Солнца корона более или менее ста­бильна, то по мере увеличения расстояния она стре­мится расшириться в пространство. И чем дальше от Солнца, тем выше скорость этого расширения. Согласно расчетам американского астронома Э. Паркера, уже па расстоянии 10 млн. км корональные частицы движутся со скоростями, превосходящими скорость звука. И но мере дальнейшего удаления от Солнца и ослабления силы солнечного притяжения эти скорости возрастают еще в несколько раз.

Таким образом, напрашивается вывод о том, что сол­нечная корона — это и есть солнечный ветер, обдуваю­щий пространство нашей планетной системы.

Эти теоретические выводы были полностью подтвер­ждены измерениями па космических ракетах и искус­ственных спутниках Земли. Оказалось, что солнечный ветер существует всегда и вблизи Земли «дует» со ско­ростью около 400 кмсек. С увеличением солнечной ак­тивности скорость эта возрастает.

Как далеко дует солнечный ветер? Вопрос этот пред­ставляет значительный интерес, однако для получения соответствующих экспериментальных данных необходимо осуществить зондирование космическими аппаратами внешней части солнечной системы. Пока же это не сде­лано, приходится довольствоваться теоретическими сооб­ражениями.

Однако однозначного ответа получить не удается. В зависимости от исходных предпосылок расчеты при­водят к различным результатам. В одном случае получается, что солнечный ветер затихает уже в районе ор­биты Сатурна, в другом, — что он существует еще на очень большом расстоянии за орбитой последней планеты Плутона. Но это лишь теоретически крайние пределы возможного распространения солнечного ветра. Указать точную границу могут лишь наблюдения.


Наиболее достоверными были бы, как мы уже отме­чали, данные космических зондов. Но в принципе воз­можны и некоторые косвенные наблюдения. В частности, было замечено, что после каждого очередного спада сол­нечной активности соответствующее возрастание интен­сивности космических лучей высоких энергий, т. е. лу­чей, приходящих в солнечную систему извне, происходит с запозданием примерно на шесть месяцев. Видимо, это и есть как раз тот срок, который необходим, чтобы оче­редное изменение мощности солнечного ветра дошло до границы его распространения. Так как средняя скорость распространения солнечного ветра составляет около 2,5 астрономической единицы (1 астрономическая еди­ница = 150 млн. км—среднему расстоянию Земли от Солн­ца) в сутки, то это дает расстояние около 40—45 астро­номических единиц. Другими словами, солнечный ветер иссякает где-то в районе орбиты Плутона.

Источник: www.allkosmos.ru

Новые миссии

NASA планирует запуск новой миссии по изучению Солнца. Она дает ученым надежду узнать еще больше о природе Солнца и солнечного ветра. Солнечный зонд NASA Parker, планируемый к запуску (успешно запущен 12.08.2018 — Navigator) летом 2018 года, будет работать таким образом, чтобы буквально «коснуться Солнца». Спустя несколько лет полета на орбите, близкой к нашей звезде, зонд впервые в истории погрузится в корону Солнца. Это будет сделано для того, чтобы получить комбинацию фантастических изображений и измерений. Эксперимент продвинет вперед наше понимание природы солнечной короны, и улучшит понимание происхождения и эволюции солнечного ветра.


Источник: alivespace.ru

Крах представления о статической солнечной короне.

В течение достаточно длительного времени считалось, что все атмосферы звезд находятся в состоянии гидростатического равновесия, т.е. в состоянии, когда сила гравитационного притяжения данной звезды уравновешивается силой, связанной с градиентом давления (изменением давления в атмосфере звезды на расстоянии r от центра звезды. Математически это равновесие выражается в виде обыкновенного дифференциального уравнения,

где G – гравитационная постоянная, M* – масса звезды, p и r – давление и массовая плотность на некотором расстоянии r от звезды. Выражая массовую плотность из уравнения состояния для идеального газа

р = rRT

через давление и температуру и интегрируя полученное уравнение, получаем так называемую барометрическую формулу (R – газовая постоянная), которая в частном случае постоянной температуры Т имеет вид


где p0 – представляет собой давление у основания атмосферы звезды (при r = r0). Поскольку до работы Паркера считалось, что солнечная атмосфера, так же как и атмосферы других звезд, находится в состоянии гидростатического равновесия, то ее состояние определялось аналогичными формулами. Учитывая необычное и не до конца еще понятое явление резкого возрастания температуры примерно от 10 000 К на поверхности Солнца до 1 000 000 К в солнечной короне, С.Чепмен развил теорию статической солнечной короны, которая должна была плавно переходить в локальную межзвездную среду, окружающую Солнечную систему. Отсюда следовало, что, согласно представлениям С.Чепмена, Земля, совершающая свои обороты вокруг Солнца, погружена в статическую солнечную корону. Эта точка зрения в течение длительного времени разделялась астрофизиками.

Удар по этим уже установившимся представлениям был нанесен Паркером. Он обратил внимание на то, что давление на бесконечности (при r ® Ґ), которое получается из барометрической формулы, по величине почти в 10 раз превосходит давление, которое было принято в то время для локальной межзвездной среды. Чтобы устранить это расхождение Е.Паркер предположил, что солнечная корона не может находиться в гидростатическом равновесии, а должна непрерывно расширяться в окружающую Солнце межпланетную среду, т.е. радиальная скорость V солнечной короны не равна нулю. При этом вместо уравнения гидростатического равновесия он предложил использовать гидродинамическое уравнение движения вида, где МЕ – масса Солнца.


При заданном распределении температуры Т, как функции расстояния от Солнца, решение этого уравнения с использованием барометрической формулы для давления и уравнение сохранения массы в виде

можно трактовать как солнечный ветер и именно при помощи этого решения с переходом от дозвукового течения (при r < r* ) к сверхзвуковому (при r > r*) можно согласовать давление р с давлением в локальной межзвездной среде, а, следовательно, именно это решение, названное солнечным ветром, осуществляется в природе.

Первые прямые измерения параметров межпланетной плазмы, которые проводились на первых космических аппаратах, выходивших в межпланетное космическое пространство, подтвердили правильность идеи Паркера о наличии сверхзвукового солнечного ветра, причем оказалось, что уже в районе орбиты Земли скорость солнечного ветра намного превосходит скорость звука. С тех пор нет сомнения, что представление Чепмена о гидростатическом равновесии солнечной атмосферы ошибочно, а солнечная корона непрерывно расширяется со сверхзвуковой скоростью в межпланетное космическое пространство. Несколько позже астрономические наблюдения показали, что и многие другие звезды обладают «звездными ветрами», аналогичными солнечному ветру.


Несмотря на то, что солнечный ветер предсказан теоретически на основе сферически-симметричной гидродинамической модели, само явление оказалось значительно сложнее.

Какова реальная картина движения солнечного ветра? В течение длительного времени солнечный ветер считался сферически-симметричным, т.е. независимым от солнечных широты и долготы. Поскольку космические аппараты до 1990, когда был запущен космический аппарат «Улисс» (Ulysses), в основном, летали в плоскости эклиптики, то измерения на таких космических аппаратах давали распределения параметров солнечного ветра только в этой плоскости. Расчеты, проводимые по наблюдениям отклонения хвостов комет, указывали на приблизительную независимость параметров солнечного ветра от солнечной широты, однако, этот вывод на основании кометных наблюдений не был достаточно надежен из-за сложностей интерпретации этих наблюдений. Хотя долготная зависимость параметров солнечного ветра измерялась приборами, установленными на космических аппаратах, тем не менее, она была либо незначительной и связывалась с межпланетным магнитным полем солнечного происхождения, либо с кратковременными нестационарными процессами на Солнце (главным образом, с солнечными вспышками).

Измерения параметров плазмы и магнитного поля в плоскости эклиптики показали, что в межпланетном пространстве могут существовать так называемые секторные структуры с различными параметрами солнечного ветра и различным направлением магнитного поля. Такие структуры вращаются вместе с Солнцем и явно указывают на то, что они являются следствием аналогичной структуры в солнечной атмосфере, параметры которой зависят, таким образом, от солнечной долготы. Качественно четырехсекторная структура показана на рис. 1.


Рис. 1. МАГНИТНЫЕ СИЛОВЫЕ ЛИНИИ в солнечном ветре в плоскости эклиптики. Схематическая картина отражает возможную четырехсекторную структуру в межпланетной среде.

При этом наземные телескопы обнаруживают общее магнитное поле на поверхности Солнца. Его средняя величина оценивается в 1 Гс, хотя в отдельных фотосферных образованиях, например, в солнечных пятнах магнитное поле может быть на порядки величины больше. Поскольку плазма является хорошим проводником электричества, то солнечные магнитные поля так или иначе взаимодействуют с солнечным ветром вследствие появления пондеромоторной силы j ґ B. Эта сила мала в радиальном направлении, т.е. она практически не влияет на распределение радиальной компоненты солнечного ветра, однако ее проекция на перпендикулярное к радиальному направление приводит к появлению у солнечного ветра тангенциальной компоненты скорости. Хотя эта компонента почти на два порядка меньше радиальной, она играет существенную роль в выносе из Солнца момента количества движения. Астрофизики предполагают, что последнее обстоятельство может играть существенную роль в эволюции не только Солнца, но и у других звезд, у которых обнаружен звездный ветер. В частности, для объяснения резкого уменьшения угловой скорости звезд позднего спектрального класса часто привлекается гипотеза о передаче ими вращательного момента образующимся вокруг них планетам. Рассмотренный механизм потери углового момента Солнца путем истечения из него плазмы в присутствии магнитного поля открывает возможность пересмотра этой гипотезы.

Измерения среднего магнитного поля не только в районе орбиты Земли, но и на больших гелиоцентрических расстояниях (например, на космических аппаратах «Вояджер 1 и 2» и «Пионер 10 и 11») показали, что в плоскости эклиптики, почти совпадающей с плоскостью солнечного экватора, его величина и направление хорошо описывается формулами

полученными Паркером. В этих формулах, описывающих так называемую паркеровскую спираль Архимеда, величины Br , Bj – радиальная и азимутальная компоненты вектора магнитной индукции соответственно, W – угловая скорость вращения Солнца, V – радиальная компонента солнечного ветра, индекс «0» относится к точке солнечной короны, в которой величина магнитного поля известна.

Запуск Европейским космическим агентством в октябре 1990 космического аппарата «Улисс», траектория которого была рассчитана таким образом, что в настоящее время он вращается вокруг Солнца в плоскости, перпендикулярной плоскости эклиптики, полностью изменил представления о том, что солнечный ветер сферически симметричен. На рис. 2 представлены измеренные на аппарате «Улисс» распределения радиальной скорости и плотности протонов солнечного ветра как функции солнечной широты.

Рис. 2. ЗАВИСИМОСТЬ РАДИАЛЬНОЙ СКОРОСТИ и плотности протонов солнечного ветра от солнечной широты, измеренная на космическом аппарате «Улисс».

Из этого рисунка видна сильная широтная зависимость параметров солнечного ветра. Оказалось, что скорость солнечного ветра возрастает, а плотность протонов уменьшается с гелиографической широтой. И если в плоскости эклиптики радиальная скорость в среднем ~ 450 км/cек, а плотность протонов ~15 см–3, то, например, на 75° солнечной широты эти величины ~700км/сек и ~5 см–3 соответственно. Зависимость параметров солнечного ветра от широты менее выражена в периоды минимума солнечной активности.

Нестационарные процессы в солнечном ветре.

Модель, предложенная Паркером, предполагает сферическую симметрию солнечного ветра и независимость его параметров от времени (стационарность рассматриваемого явления). Однако процессы, происходящие на Солнце, вообще говоря, не являются стационарными, а следовательно, и солнечный ветер не является стационарным. Характерные времена изменения параметров имеют самые различные масштабы. В частности, имеют место изменения параметров солнечного ветра, связанные с 11-летним циклом солнечной активности. На рис. 3 показано измеренное при помощи космических аппаратов IMP-8 и Voyager-2 среднее (за 300 дней) динамическое давление солнечного ветра (r V2 ) в районе орбиты Земли (на 1 АЕ) в течение одного 11-летнего солнечного цикла солнечной активности (верхняя часть рисунка). На нижней части рис. 3 изображено изменение числа солнечных пятен за время с 1978 по 1991 (максимальное число соответствует максимуму солнечной активности). Видно, что параметры солнечного ветра существенно меняются за характерное время порядка 11-лет. При этом измерения на космическом аппарате «Улисс» показали, что такие изменения происходят не только в плоскости эклиптики, но и на других гелиографических широтах (на полюсах динамическое давление солнечного ветра несколько выше, чем на экваторе).

Рис. 4. ИЗМЕНЕНИЕ ДИНАМИЧЕСКОГО ДАВЛЕНИЯ в солнечном ветре в течение цикла солнечной активности, измеренное в районе орбиты Земли при помощи космического аппарата IMP-8 и Voyager-2 (верхний рисунок).ИЗМЕНЕНИЕ ЧИСЛА СОЛНЕЧНЫХ ПЯТЕН за то же время – большее число пятен характеризует большую солнечную активность (нижний рисунок)

Изменения параметров солнечного ветра могут происходить и на гораздо меньших временных масштабах. Так, например, вспышки на Солнце и разные скорости истечения плазмы из разных областей солнечной короны приводят к тому, что в межпланетном пространстве образуются межпланетные ударные волны, которые характеризуются резким скачком скорости, плотности, давления, температуры. Качественно механизм их образования показан на рис. 4. Когда быстрый поток какого-либо газа (например, солнечной плазмы) догоняет более медленный, то в месте их соприкосновения возникает произвольный разрыв параметров газа, на котором не выполняются законы сохранения массы, импульса и энергии. Такой разрыв не может существовать в природе и распадается, в частности, на две ударные волны (на них законы сохранения массы импульса и энергии приводят к так называемым соотношениям Гюгонио) и тангенциальный разрыв (те же законы сохранения приводят к тому, что на нем давление и нормальная компонента скорости должны быть непрерывны). На рис. 4 этот процесс показан в упрощенной форме сферически симметричной вспышки. Здесь надо отметить, что такие структуры, состоящие из впереди идущей ударной волны (forward shock), тангенциального разрыва и второй ударной волны (reverse shock) движутся от Солнца таким образом, что forward shock движется со скоростью, большей скорости солнечного ветра, reverse shock движется от Солнца со скоростью несколько меньшей скорости солнечного ветра, а скорость тангенциального разрыва равна скорости солнечного ветра. Такие структуры регулярно регистрируются приборами, установленными на космических аппаратах.

Нестационарность солнечного ветра может проявляться и на гораздо меньших временных интервалах, связанных, например, с так называемой «плазменной турбулентностью», однако эти процессы достаточно сложны.

Рис. 5. КАЧЕСТВЕННАЯ КАРТИНА СТРУКТУРЫ ТЕЧЕНИЯ, возникающего от воздействия на спокойный солнечный ветер высокоскоростного потока плазмы от Солнца, который может образоваться в результате солнечной вспышки. Тангенциальный разрыв отделяет спокойный солнечный ветер, возмущенный впереди идущей ударной волны, от вспышечной плазмы, возмущенной сзади идущей ударной волной.

Об изменении параметров солнечного ветра с расстоянием от солнца.

Изменение скорости солнечного ветра с расстоянием от Солнца определяется двумя силами: силой солнечной гравитации и силой, связанной с изменением давления (градиентом давления). Поскольку сила гравитации убывает как квадрат расстояния от Солнца, то на больших гелиоцентрических расстояниях ее влияние несущественно. Расчеты показывают, что уже на орбите Земли ее влиянием, также как и влиянием градиента давления, можно пренебречь. Следовательно, скорость солнечного ветра можно считать почти постоянной. При этом она существенно превосходит скорость звука (течение гиперзвуковое). Тогда из приведенного выше гидродинамического уравнения для солнечной короны следует, что плотность r убывает как 1/r2. Американские космические аппараты «Вояджер 1 и 2», «Пионер 10 и 11», запущенные в середине 1970-ых и сейчас находящиеся на расстояниях от Солнца в несколько десятков астрономических единиц, подтвердили эти представления о параметрах солнечного ветра. Они подтвердили также и предсказанную теоретически паркеровскую спираль Архимеда для межпланетного магнитного поля. Однако температура не следует адиабатическому закону охлаждения при расширении солнечной короны. На очень больших расстояниях от Солнца солнечный ветер имеет даже тенденцию к разогреву. Такой разогрев может быть обусловлен двумя причинами: диссипацией энергии, связанной с плазменной турбулентностью, и влиянием нейтральных атомов водорода, проникающих в солнечный ветер из межзвездной среды, окружающей солнечную систему. Вторая причина приводит и к некоторому торможению солнечного ветра на больших гелиоцентрических расстояниях, обнаруженная на вышеупомянутых космических аппаратах.

Заключение.

Таким образом, солнечный ветер – это физическое явление, которое представляет не только чисто академический интерес, связанный с изучением процессов в плазме, находящейся в естественных условиях космического пространства, но и фактор, который необходимо учитывать при изучении процессов, происходящих в окрестности Земли, поскольку эти процессы в той или иной степени оказывают влияние на нашу жизнь. В частности, высокоскоростные потоки солнечного ветра, обтекая магнитосферу Земли, влияют на ее строение, а нестационарные процессы на Солнце (например, вспышки) могут приводить к магнитным бурям, нарушающим радиосвязь и влияющим на самочувствие метеочувствительных людей. Поскольку солнечный ветер зарождается в солнечной короне, то его свойства в районе орбиты Земли являются хорошим индикатором для изучения важных для практической деятельности человека солнечно-земных связей. Однако это уже другая область научных исследований, которой мы не будем касаться в настоящей статье.

Владимир Баранов

Источник: www.krugosvet.ru

Что такое солнечный ветер?

Каждое мгновение Солнце излучает в космос поток ионизированных частиц испускаемый внешним слоем (солнечной короной) на огромной скорости, достигающей 1200 км/с. Данное явление носит название «солнечный ветер». Его бесконечные «вихри» окружают Землю, пронизывают пространство Солнечной системы, и даже выходят далеко за её пределы. Испускать его могут все звёзды, и в таком случае называется он звёздным ветром. Поток частиц Солнца также можно назвать звёздным ветром Солнца и ошибки в этом не будет.

Солнечный ветер
Солнечный ветер

История возникновения понятия

Научное представление человека об окружающем мире постоянно претерпевает изменения. Процесс отрицания предшествующих догм и понятий даёт возможность по-новому взглянуть на существующую действительность.

Длительное время наука считала статичной корону любой звезды. То есть, сила притяжения как бы уравновешивала силу давления ядерных и термоядерных взрывов, и не давала отпускать от себя в окружающее пространство потоки раскалённой материи.

Английский геофизик и астроном Сидни Чепмен в своём время создал и развил теорию устойчивости солнечной атмосферы. Его гипотеза разделила астрофизическое сообщество. Всё так и продолжалось бы до нашего времени. Однако нашёлся человек решительно и бесповоротно опровергший взгляды знаменитого учёного.

Солнечная корона
Солнечная корона

Имя его – Юджин Ньюмен Паркер. Американский астрофизик нанёс сокрушающий удар по концепции своего английского коллеги. Своими пионерскими разработками он смог доказать необратимость истечения материи из короны. Более того, выяснился очень любопытный факт: по мере удаления от Солнца скорость солнечного ветра значительно возрастает, достигая сверхзвуковых величин, затем снижается и становится стабильной. Кстати, границы его распространения до сих пор не определены и ждут своих первооткрывателей.

Замеры, проводимые на первых межпланетных космических аппаратах, подтвердили правильность выводов Ю. Паркера. Немногим позже, астрономы обнаружили аналогичные звёздные ветра на просторах ряда Галактик.

Как появляется солнечный ветер?

Причиной появления потока, состоящего из смеси положительно и отрицательно заряженных частиц, является постоянно образующаяся внутри Солнца плазма. Возникает она в результате бесконечно протекающих реакций термоядерного синтеза, нагревающих центр звезды до нескольких десятков миллионов градусов по Цельсию. Разогретый таким образом ионизированный газ, стремительно вырывается из условно «ограниченного объёма», разлетаясь далеко за пределы нашей звёздной системы.

Появление солнечного ветра
Появление солнечного ветра

В сентябре 2016 года американским учёным с помощью обсерваторий NASA STEREO впервые удалось засечь процесс возникновения солнечного ветра. Согласно их заявлению, происходящее идентично выбросу воды: сначала поток идёт одной струёй, затем распадается на отдельные частички, которые становятся всё меньше и меньше, пока не образуется газообразное «облако».

NASA STEREO
NASA STEREO

Изучение явления

За семь лет до Ю. Паркера западногерманский астроном Людвиг Бирман, изучая структуру хвостов комет, предположил существование корпускулярного излучения Солнца, называемого сейчас солнечным ветром. Поток заряженных частиц, прорываясь сквозь корональные дыры (районы на поверхности нашей звезды не закрытые магнитным полем), устремляется в открытое космическое пространство.

Впервые измерение технических параметров солнечного ветра было произведено на советской межпланетной автоматической станции «Луна-2» в 1959 году.

Автоматическая межпланетная станция "Луна-2"
Автоматическая межпланетная станция “Луна-2”

Через три года американский спутник «Маринер-2» выполнил многомесячные исследования уникального космического явления. В дальнейшем изучения были продолжены международной станцией SOHO и целым рядом программ национального управления – НАСА, США. Научная деятельность по изучению солнечного ветра расширила свои горизонты от поверхности Солнца до самого края звёздной системы.

Скорость солнечного ветра

Большой научно-практический интерес представляет измерение, а также изучение закономерностей движения потока водородной плазмы, составляющий основу солнечного ветра.
Первоначально ионизированные частицы гелия, водорода, железа, кремния, серы и ряда других химических элементов движутся, со скоростью 300-450 км/сек.

В дальнейшем скорость солнечного ветра потока нарастает, достигая 400 – 800 км/сек около Земли (именно здесь заканчивается его ускорение). 1 500 000 км/час (420 км/сек) в районе Марса. На расстоянии до 10 млрд. км от источника излучения скорость движения солнечных заряженных частиц примерно составляет – 1 000 000 км/час (280 км/сек). Далее, под воздействием межзвёздной среды, она ослабевает.

Динамика движения солнечного ветра находится под воздействием двух факторов: силы притяжения светила и силы давления внутри потока. Расчёты, подкреплённые практическими исследованиями (полёты американских «Вояджер – 1, – 2» и «Пионер – 10, – 11») показали постоянство скорости истечения разноимённо заряженных частиц уже за пределами орбиты нашей планеты.

Виды солнечного ветра

Характер ионизированного потока Солнца упорядочен и подразделяется на два вида:

  • спокойный (медленный или быстрый);
  • возмущённый.

Спокойный – медленный

Медленный солнечный ветер возникает в недрах экватора нашего светила, в периоды температурного расширения ионизированных газов. Динамический процесс разгоняет корональную плазму до сверхзвуковых скоростей, примерно равных 400 км/сек. По своему строению, медленный поток плотнее и шире, чем быстрый.

Спокойный – Быстрый

Местом рождения быстрого солнечного ветра служат корональные дыры. Потоки данного ветра могут истекать месяцами, «атакуя» Землю с периодичностью вращения Солнца продолжительностью в 27 суток.

Возмущённый

Причиной возникновения возмущённых потоков является: проявление самого коронального выброса, а также появление в межпланетном пространстве мест сжатия перед наступающими корональными выбросами массы или быстрым солнечным ветром.

Межпланетная ударная волна

Появлению космической ударной волны предшествует: «Нападение» быстрого солнечного ветра на «медленного брата», Столкновение заряженного потока корональных частиц с магнитосферой Земли, взрыв сверхновой звезды, столкновение галактик.

Ударная волна – это область столкновения быстро движущейся среды (газа) с каким-либо препятствием (к примеру: солнечного ветра с магнитосферой Земли), порождающая при этом «фронт» резкого изменения физических параметров набегающего потока (давления, плотности, температуры, уровня заряда частиц и ряда других показателей).

Распространение солнечного ветра в космосе

Удаляясь всё дальше от своего «прародителя» – Солнца, ветер ослабевает и проходит несколько пограничных областей. Первая из них удалена от светила на расстояние 95 а.е. (а.е. – астрономическая единица, равная среднему расстоянию от Земли до Солнца и составляющая 149 598 100 ± 750 км). Так называемая – «граница ударной волны». Именно на ней происходит торможение солнечного ветра со сверхзвуковых скоростей.

Распространение солнечного ветра в космосе
Распространение солнечного ветра в космосе

Пролетев ещё 40 а.е., поток ионизированных частиц под воздействием межзвёздного вещества полностью тормозится. Определяемая астрофизическими процессами граница торможения носит название гелиопаузы. Пространственная область, ограниченная гелиопаузой получила название – гелиосфера. Размеры её неодинаковы:

  • 73 а.е. с южной стороны;
  • 85 а.е. с северной стороны.

Астрофизические данные были получены благодаря запуску 2-х американских космических аппаратов серии «Вояджер», предназначенных для исследования границ Солнечной системы. Совсем недавно «Вояджер-2» подтвердил данные «Вояджер-1».

Солнечный ветер и Земля

Постоянно изменяющиеся потоки солнечного ветра запросто могли бы уничтожить всё живое на поверхности Земли. Для защиты от столь «грозного оружия» имеется «надёжный щит» в виде магнитосферы. Паритет данного противостояния довольно изменчив и часто вызывает геомагнитные бури. Не удивительно, что в 1990 году приобрёл актуальность термин – «космическая погода», в основном отражающий текущее состояние магнитного поля Земли.

Создателем науки гелиобиологии, изучающей воздействие нашего светила на жизненные функции земных организмов, стал советский учёный А. Л. Чижевский. Благодаря ему и целому ряду других исследователей удалось выяснить закономерности воздействия перепадов солнечной активности на организм человека, повышение и понижение урожайности культурных растений, размножение и сокращение популяций птиц, рыб, животных.

Обнаружена и изучена цикличность периодов воздействия Солнца на Земле. Регулярные сообщения об уровне активности геомагнитного фона стали обычным явлением. Люди, страдающие хроническими заболеваниями, имеют необходимую информацию для своевременного принятия нужных лекарств. Современное растениеводство и животноводство также «вооружено» знаниями, чтобы вести свою деятельность наиболее оптимально.
Интересный факт: По наблюдениям Н. С. Щербинского, периодичность прихода саранчи на поля совпадает с 11-и летним ритмом Солнца.

Наука идёт вперёд и зовёт за собой молодых. Сегодня каждый из них может получить специальность гелиобиолога, закончив профильное высшее учебное заведение.

Вызываемые солнечным ветром природные явления

Солнечный ветер, пролетая вокруг Земли, вызывает массу природных явлений. Среди них: магнитные бури, полярные сияния, радиационные пояса планеты. Не так давно выяснилась закономерность увеличения количества молний от роста потока ионизированных частиц нашей звезды.

Северное сияние
Северное сияние

Есть целый ряд геофизических явлений, порождаемых солнечным ветром. В ряде местностей возрастет выход газообразного радона из земной поверхности, что может привести к повышению радиоактивности в атмосфере. Имеется зависимость между солнечной активностью и ростом числа землетрясений. Магнитная буря значительно изменяет напряжённость электрического поля на поверхности Земли и приводит к скачкам атмосферного давления.

Опасность солнечного ветра

Мощные выбросы с поверхности светила нарушают радиосвязь, создают помехи в работе компьютеров, вызывают сбои в инженерных сетях, порождают «вредное» протекание электрического тока в металлоконструкциях и приборах.

Угрозы атак солнечного ветра, приводящих к множеству проблем, создали потребность в тщательном наблюдении и прогнозировании магнитных бурь на нашей планете. Метеослужбы всего мира оснащены необходимым оборудованием, и постоянно сигнализируют о колебаниях магнитного фона Земли. Отработана технология выявления будущих очагов сейсмической активности и предупреждения населения о предстоящей опасности.

Перспективы использования солнечного ветра

В свете всех существующих особенностей такого уникального космического явления, как солнечный ветер, становится очень интересно найти ему практическое применение.
Первопроходцем создания так называемого «электрического паруса», «солнечного паруса» (космический аппарат, двигающийся за счёт энергии заряженных частиц солнечного ветра) стал финский учёный – Пекка Янхунен.

Весной 2013 года эстонский спутник ESTCube-1, оснащённый этим устройством был выведен на орбиту. К сожалению, попытка была неудачной, так как парус не смог раскрыться.

Есть и другие заманчивые проекты: использование потоков коронального вещества для передачи информации, или создания на орбитах планет «ионостанций» для выработки электрической энергии.

Будущее нашего Солнца

Научный анализ даёт прогноз на 5 млрд. лет существования нашего светила. Теряя ежесекундно до 600 млн. тонн водорода, оно обречено стать сначала красным гигантом, а потом – белым карликом. Попутно исчерпав все свои энергетические запасы в виде водорода и гелия. Самое неприятное, что беспрерывно расширяясь, Солнце расплавит Меркурий, Венеру, возможно и Землю. Во всяком случае, жизнь на планете полностью исчезнет.

Значит, человечество обязано подумать о своём будущем и организовать переселение на другие миры за пределами нашей Солнечной системы. Это неизбежно. Великие умы: русский учёный Циолковский, британский астрофизик Стивен Хокинг, прямо говорили об этом. Луна, Марс, Церера, Плутон – список потенциальных колоний ширится. Итак: «Пусть дует солнечный ветер в паруса космических кораблей землян, штурмующих просторы Вселенной!»

Поделиться:

Источник: kipmu.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.