Как возникла наука астрономия кратко


Много тысячелетий назад, еще до того, как началась история цивилизации, человек однажды взглянул на ночной небосвод и внезапно понял, что эта бездна, полная светил, хранит в себе тысячи тайн — в том числе и самую главную: с чего начался наш мир, «откуда все пошло». С тех пор тысячи лучших умов бились над загадками Вселенной, возникновения жизни и разума.

Со временем из наблюдений за звездным небом и движением светил родилась наука астрономия. Без астрономии невозможно было понять не только законы движения звезд и планет, но и то, что происходит на нашей Земле: смену дня и ночи, чередование времен года, причины приливов и отливов, изменений климата. Ведь наша планета имеет такое же происхождение, как и другие тела во Вселенной.

На первых порах астрономические знания были необходимы жрецам, мореплавателям, земледельцам — тем, кому требовался надежный и точный отсчет времени. Но не только земные дела волновали людей. Величественная красота недосягаемых небес во все времена притягивала их взгляды и волновала сердца. Недаром именно там, за «хрустальными сферами», большинство народов и племен «поселили» своих богов. Небо во все эпохи было символом гармонии, источником вдохновения.

Звезды над головой


Звездное небо уже в самой глубокой древности притягивало взгляды наших предков. Тысячи далеких светил, мерцая в черной бездне, пугали и манили, скрывали непостижимые тайны и загадки. Уже в те времена человек пытался понять, какое место отведено ему во Вселенной, что собой представляет этот огромный мир, как он устроен, было ли у него начало или он существовал всегда, возникла ли Вселенная сама по себе или к ее сотворению приложили руку могущественные божества.

На заре цивилизации, когда люди были почти бессильны перед могуществом природы, возникла вера в сверхъестественные силы, которые по своей воле создали мир и управляют им. На протяжении тысячелетий обожествлялась Луна и Солнце, а планеты служили символами других менее влиятельных богов. Об этом мы знаем из мифов многих народов мира.

Коротая ночи у костров, люди заметили, что звезды всегда остаются одними и теми же и не меняют взаимного расположения. Лишь немногие светила движутся по небу иначе, по каким-то особым законам. Некоторые из неподвижных звезд образовывали на небе приметные фигуры — созвездия, которые можно было легко отыскать. Часть из них располагалась так, что по ним можно было сориентироваться в отсутствие Солнца, другие позволяли следить за движением ночного неба и по времени их восхода и захода определять время.


Солнце, Луна и звезды стали первыми ориентирами, по которым первобытные кочевники научились определять направление в своих странствиях. А при переходе к оседлому образу жизни земледельцы заметили, что смена времен года и наступление дождливых и засушливых периодов связаны с появлением на ночном небе определенных звезд. Так одна из важнейших потребностей повседневной жизни — необходимость ориентироваться во времени и пространстве — заставила людей все пристальнее изучать небесные явления, следить за движением Солнца и Луны, восходом и заходом звезд и созвездий в разное время ночи и в течение года.

Первые представления людей о мироздании были чрезвычайно наивными: все «земное» в них противопоставлялось «небесному». Люди полагали, что существует «небесная твердь», своего рода купол, к которому прикреплены различные светила, а Землю считали плоской и принимали за неподвижный центр Вселенной.

Позднее «небесную твердь» пришлось заменить подвижной «небесной сферой». Это понадобилось для того, чтобы объяснить движение созвездий. Позднее «сфер» стало несколько — считалось, что к одной из них прикреплены Солнце и Луна, к другой — планеты, к третьей, самой удаленной — звезды. Было также замечено, что в той части неба, где днем никогда не бывает Солнца, ночью загораются звезды и созвездия, которые никогда не заходят, а среди них и Полярная звезда, всегда неподвижная и указывающая северную сторону горизонта.

Астрономические наблюдения, связанные с необходимостью ориентироваться во времени и пространстве, возникли на очень ранних этапах развития человечества. За много веков до появления письменности и первых государств, были сделаны многие важные открытия, связанные с движением светил на небе. Так родилась астрономия — древнейшая из наук.


Первобытные народы смогли довольно точно определить продолжительность года, знали время наступления солнцестояний и равноденствий, так как с этими событиями были связаны разливы рек, начало и завершение сельскохозяйственных работ. К этим датам были приурочены праздники: праздник начала весны, связанный с прохождением Солнца через точку весеннего равноденствия и весенним полнолунием, и праздник завершения сбора урожая, связанный с осенним равноденствием и полнолунием. Точных дат у праздников не было, их каждый раз приходилось вычислять на основе наблюдений за небом.

Уже за 2 тыс. лет до н. э. астрономы Древнего Китая так хорошо изучили видимые движения Солнца и Луны, что могли с большой точностью предсказывать наступление солнечных и лунных затмений.

Удивительно, но факт: задолго до того, как люди получили более или менее полные представления о Земле и накопили географические знания, они уже ориентировались во Вселенной и создавали ее первые модели. Овладение пространством человечество начало с космоса и лишь впоследствии обратило свои взоры к Земле.


Место, где изучают звездное небо

Для наблюдения за астрономическими явлениями люди издревле строили специальные сооружения — обсерватории, которые в то время представляли собой башни со смотровыми площадками. Их возводили обычно на высокой и открытой местности. Согласно предположению некоторых ученых, первая в мире обсерватория была построена более 7 тысяч лет назад в горах Армении. Доподлинно известно, что в Древнем Египте существовало много обсерваторий, а трудились там жрецы.

Астрономия в Древнем Египте

В Древнем Египте астрономия считалась самой важной и почетной наукой. Ею занимались только избранные люди высокого происхождения — жрецы. Им уже было известно, что сутки на Земле продолжаются 24 часа, а год — 365 суток, они знали все лунные фазы и легко могли составить любой календарь. Простые египтяне, считавшие, что все небесные тела являются божествами, думали, что жрецы-астрономы осведомлены о планах богов. Именно поэтому с астрономами в Египте советовались даже правители страны — фараоны.

Древние египтяне, как и многие другие народы, понимали, что важнейшую роль в жизни людей на Земле играет Солнце. Изо дня в день они наблюдали, как светящийся диск щедро награждает их своим теплом и светом, а когда Солнце заходит, наступает кромешная тьма. Поэтому египтяне любили и почитали небесное светило, считая его главным богом, и называли именем Ра, что в переводе с древнеегипетского и означает «Солнце».

Астрономия в Древней Греции


Древняя Греция, или Эллада, как называли свою землю сами греки, достигла расцвета в конце 1 тыс. до н. э. Греки переняли многие знания и учения Египта и Вавилона, но изменили и привели в систему так, как сами они видели и понимали мир. Астрономия в Древней Греции стала одной из важнейших наук — ею занимались не только жрецы, мореплаватели и купцы, но и крупнейшие философы, которые зачастую были также учеными широчайших познаний. Древнегреческая карта неба и названия многих астрономических объектов сохранились до наших дней. Еще в 9 в. до н. э. в поэмах Гомера «Илиада» и «Одиссея» были описаны приемы определения месяца и года, ведения календаря и отсчета времени.

Великий древнегреческий философ Платон (428—348 гг. до н. э.) одним из первых высказал догадку о том, что Земля представляет собой шар, хотя его предшественники всегда представляли ее в виде плоского или выпуклого диска. Огромное влияние на астрономов Греции имел призыв Платона найти объяснение неравномерностям в движении различных светил.

Евдокс Книдский

Первым, кто услышал призыв Платона, был Евдокс Книдский (408— 355 гг. до н. э.), создатель целой астрономической школы, заложивший основы теоретической астрономии. Евдокс был творцом невероятно сложной модели движения планет, которая, однако, объясняла их поведение на небе — всех, за исключением Марса. Он также составил первый в Европе каталог звезд.

Греки считали небо состоящим из твердых прозрачных оболочек — сфер, расположенных на различной высоте от поверхности Земли и вращающихся вокруг нее. Светила закреплены неподвижно на небесных сферах. На самой удаленной от Земли сфере расположены звезды — поэтому они совершают полный оборот ровно за сутки. Подбирая скорости вращения, взаимное расположение других сфер и углы наклона их осей, Евдокс сумел объяснить даже такую загадку, как петли, описываемые на небе Марсом, Юпитером и Сатурном на фоне звезд.


Позже модель Евдокса включил в свое учение о природе философ и ученый Аристотель (384—322 гг. до и. э.), но никакие ухищрения не могли сделать эту модель точной — ведь «сфер Евдокса» просто не существовало в природе.

Крупнейший древнегреческий астроном и философ Аристарх Самосский (310—250 гг. до н. э.) родился на острове Самос в Эгейском море. Одним из первых он использовал геометрические вычисления для определения размеров Солнца и Луны и нахождения отношений между их размерами и орбитами, по которым эти светила движутся. Правда, он допустил немало ошибок, и в результате диаметр Солнца у него получился всего в шесть раз больше земного, а Луны — в три раза меньше. Аристарх считал, что Солнце находится в центре нашей планетной системы, несмотря на то что современники просто смеялись над этой идеей и обвиняли ученого в оскорблении богов. Смену дня и ночи на Земле он объяснял абсолютно верно — вращением Земли вокруг своей оси, а Луну называл спутником Земли.

Гиппарх Никейский

Гиппарха Никейского (161—126 гг. до н. э.) часто называют самым прославленным астрономом древности. На протяжении многих лет он вел наблюдения за звездами и сравнивал их с результатами вавилонских астрономов. Гиппарх составил самый точный звездный каталог, включавший более тысячи звезд, и первым ввел в науку понятие звездных величин, разделив все звезды на шесть категорий — от самых ярких до едва видимых глазом.


Гиппарх был мастером точных измерений. Определив, что продолжительность сезонов — лета, зимы, осени и весны — несколько отличается, он понял, что это явление объясняется особым положением Солнца на небесной сфере. Ученый также усовершенствовал календарь, определив продолжительность года в 365,25 дня.

Клавдия Птолемея

Своей вершины античная астрономия достигла в трудах древнегреческого астронома, математика и географа Клавдия Птолемея (87—165 гг. н. э.). Его главный труд — «Великое математическое построение», или «Альмагест» на целое тысячелетие стал «библией» для астрономов и математиков.

В «Альмагест» вошли все достижения астрономии начиная с глубокой древности, ряд открытий, сделанных самим Птолемеем, а также каталог звездного неба со списком 48 созвездий и 1022 звезд. Ученый описал все приборы и методы вычислений, которые использовались в его время, и предложил математическую модель мира, получившую известность как «система Птолемея». Удивительно: система Птолемея не имела ничего общего с тем, что на самом деле существует в природе, однако с ее помощью можно было довольно точно предсказывать движение небесных тел, время наступления солнечных и лунных затмений и одновременного появления всех планет на земном небе.

Астрономия Пифагора


Наблюдение над неизменными и вечными звездами привело наших пращуров к мысли о том, что в мире — как на небе, так и на земле — существуют порядок и гармония. Позже, когда было замечено, что некоторые светила — планеты — перемещаются по небосклону иначе, чем звезды, но при этом также подчиняются определенным законам. Так, небо стало для людей прошлого своего рода «учебником» основных законов, согласно которым существуют время, материя и энергия. А поскольку эталоном совершенства и упорядоченности в те далекие времена считалась музыка, философы и ученые заговорили о «музыке сфер» и «гармонии небес». Во времена античности возникали учения, которые приписывали каждой из планет и небесных оболочек свое особое звучание. Именно эти звуки, сливаясь в «симфонию», воплощали для греков единство всех первооснов Вселенной.

Имя Пифагора Самосского (570—490 гг. до н. э.) — древнегреческого философа и математика — окружено множеством легенд. Греки считали его самым совершенным из мудрецов, которому доступны все тайные знания. Пифагор создал общину учеников, которая жила по открытым им законам гармонии и пытался распространить эти законы на некоторые города-государства Греции и Южной Италии, но потерпел неудачу. Именно Пифагор развил учение о законах гармонии во Вселенной, оказав огромное влияние на развитие не только философии, но и математики, физики, географии и астрономии.


Пифагор и его ученики были совершенно уверены, что Земля имеет форму шара, хотя и не могли это убедительно доказать. Последователи философа учили, что Земля, так же как и другие светила, вращается вокруг «центрального огня», «алтаря Вселенной», который невидим, так как между ним и Землей находится огромное темное небесное тело. Вокруг Земли располагаются сферы с планетами, последней из них является сфера звезд. При этом расстояния между небесными сферами пропорциональны музыкальным интервалам: от Земли до Луны — один тон, от Луны до Меркурия — полутон, от Венеры до Солнца — полтора тона и так далее. Вращаясь, каждая сфера издает музыкальный звук, который человеческое ухо неспособно различить, а все вместе они и создают «музыку сфер».

Пифагор впервые употребил слово «космос» (по-гречески оно имело два значения — «порядок» и «красивое») для определения мироздания в целом. Таким образом философ подчеркнул его важнейшую сторону — упорядоченность, симметрию, наличие закономерностей, а значит, и красоту. Пифагорейцы считали, что порядок и симметрия прекрасны и полезны, а беспорядок и асимметрия, то есть хаос, безобразны и вредны. Они верили, что красота макрокосма — Вселенной, открывается лишь тому, кто сумеет упорядочить собственный микрокосм, то есть научится вести правильную, разумно и достойно организованную жизнь.


Пифагорейцы совершили очень простое на первый взгляд, но невероятно важное открытие: они установили, что высота звука колеблющейся струны пропорциональна ее длине. Это открытие имело огромные последствия для развития всех наук, в особенности тех, которые мы называем точными. Была установлена прочная связь между числом и музыкальной гармонией, а позднее сам Пифагор заявил, что числа лежат в основе всех вещей, и познать мир — значит познать управляющие им числа. Числа и отношения были обнаружены не только в небесных сферах, но и на Земле и во всех без исключения областях человеческой деятельности.

Ученик Пифагора философ Филолай, живший в конце 5 в. до н. э., первым предположил, что смена дня и ночи происходит благодаря движению Земли, а не Солнца. Он считал, что Луна и другие известные древним грекам планеты могут быть обитаемы. Филолай писал: «Суть вещей ускользает от человека. Он познает лишь явления этого мира, в котором конечное сочетается с бесконечным. Как же может он узнать их? Только благодаря тому, что существует между ним и остальным миром гармония, единение, общее начало, которое придает им меру и смысл».

Ученики Птолемея

После того как в 5 в. всю Европу захлестнули нашествия варварских племен, развитие астрономии остановилось. Да и христианская церковь в те времена не слишком благосклонно смотрела на поиски «небесных законов», и наследие античных философов, математиков, исследователей природы было забыто на целые столетия. Зато в странах Центральной Азии и арабского мира астрономия пустила крепкие корни. Труды Аристотеля, Платона, Аристарха Самосского, Гиппарха переводились на арабский, распространялись и глубоко изучались.

«Альмагест» Птолемея стал настольной книгой нескольких поколений арабских мудрецов и дал мощный толчок развитию восточной философии, математики, астрономии. Были построены многочисленные обсерватории, крупнейшей из которых стала обсерватория Улугбека в Самарканде, и новые наблюдения позволили исправить ошибки Птолемея и совершить замечательные открытия.

«Халиф, смотрящий на звезды»

Сын знаменитого багдадского халифа Харуна аль-Рашида — Абдалла аль-Мамун (786—833) — прославился как выдающийся покровитель наук и искусств, и прежде всего, астрономии. По его повелению был переведен на арабский язык главный труд Птолемея «Альмагест», а в 827 г. на равнине около города Синджара проведены геодезические работы по измерению длины дуги градуса земного меридиана. Цель этих измерений была исключительно научной — уточнить истинные размеры нашей планеты. Интересно, что результат, полученный арабскими астрономами, всего лишь на 1 % расходится с современными спутниковыми измерениями.

В 829 г. Аль-Мамун основал в Багдаде астрономическую обсерваторию и Дом Мудрости — своеобразную академию, в которой трудились несколько поколений астрономов. Среди них были такие выдающиеся ученые, как ал-Хорезми, Ибн Турк, ал-Фаргани, ал-Джаухари, ал-Марвази и другие.

Дом Мудрости, крупнейшее научное учреждение арабского мира, просуществовал более четырех столетий, но, к несчастью, в 1258 г. был разрушен воинами монгольского хана Хулагу, а все книги из уникальной научной библиотеки, которую собирали ученые на протяжении веков, сброшены в реку Тигр.

Заповедник звездочетов

Абу Джафар Насир ад-Дин ат-Туси (1201—1274) — выдающийся персидский математик и астроном 13 в. Ему принадлежат сочинения по философии, географии, музыке, оптике, медицине, минералогии. В период монгольского завоевания Средней Азии ат-Туси был назначен придворным астрологом хана Хулагу, и в течение многих лет был его доверенным лицом и советником. Ученому удалось добиться от хана согласия и денег на строительство вблизи персидского города Тебриза в местечке Марага астрономической обсерватории, которая со временем стала крупнейшей в мире.

В результате Марагинская обсерватория был оснащена самыми лучшими астрономическими инструментами, здесь работали многие известные ученые, чью жизнь фактически спас ат-Туси. За 12 лет были созданы самые полные астрономические таблицы со звездным каталогом, а сам руководитель обсерватории в трактате «Памятка по астрономии» предложил совершенно новую теорию движения небесных тел, заметно отличающуюся от той, которую создал Птолемей.

Потомок Тамерлана

Мирза Мухаммед Улугбек (1394—1449) известен миру как правитель Мавераннахра, внук завоевателя Тамерлана и одновременно как выдающийся ученый. В 1409 г., спустя три года после смерти своего деда, Улугбек взял в свои руки бразды правления государством со столицей в Самарканде. В 1417—1420 гг. этот просвещенный потомок монгольских кочевников построил в Самарканде медресе — мусульманское духовное учебное заведение, своего рода университет. В это медресе Улугбек пригласил лучших астрономов и математиков исламского мира, да и сам он был далеко не последним астрономом и знатоком геометрии.

В 1428 г. было завершено строительство обсерватории Улугбека, главным инструментом которой стал гигантский квадрант с радиусом 40 м, равного которому не было в мире. Такие приборы использовались для регистрации момента пересечения Солнцем плоскости меридиана, на котором находится наблюдатель. В обсерватории Улугбека был составлен каталог звездного неба, в котором описаны 1018 звезд. Интересно, что Улугбек был первым, кто утверждал, что на Земле существует еще один материк — Америка.

Первые предположения, что планеты движутся по оси

Всякий знает, что наша планета вращается вокруг своей оси. Но в далеком прошлом, наблюдая за суточным движением звездного неба, люди пришли к выводу, что звезды, Солнце и планеты обращаются вокруг Земли, совершая за сутки полный оборот. На самом деле это иллюзия, которая возникает из-за вращения планеты вокруг собственной оси.

Ту сторону небосвода, где Солнце оказывается в полдень, называют южной, а противоположную ей — северной. Чем выше от горизонта располагаются звезды, тем их «перемещение» становится все менее заметным. Одна из звезд — ее называют Полярной — остается практически неподвижной в течение всей ночи. Складывается впечатление, что все небо, как единое целое, вращается вокруг невидимой оси, при этом взаимное расположение звезд и созвездий на нем не меняется.

Секрет движения небес

В действительности, вокруг оси, наподобие детского волчка, вращается Земля, причем ее ось на протяжении очень длительного времени не меняет своего положения в пространстве. Изменение наклона земной оси (а такое случалось в далеком прошлом из-за столкновений планеты с другими небесными телами — астероидами и кометами) привело бы к резкому изменению климата планеты и гибели огромного количества живых существ, населяющих сушу.

Однако на протяжении нескольких тысячелетий люди верили, что Земля совершенно неподвижна, а вращаются небесные сферы с укрепленными на них светилами. Такой взгляд разделяли и астрономы древности — именно поэтому созданные ими модели мироздания не отражали действительности, а расчеты, выполненные на их основе, приводили к ошибкам.

До тех пор, пока астрономия не вошла в повседневную жизнь, с ошибками можно было мириться, но уже в 15— 16 вв., с началом Эпохи Великих географических открытий, таблицы положений звезд стали настольными для капитанов и штурманов парусных судов. Без них невозможно было определить точные географические координаты экспедиционных судов. Близилась пора подлинной революции в науке — и в мировоззрении людей. Новый взгляд на Вселенную, Солнечную систему и место в ней нашей Земли стал могучим стимулом для развития физики, математики, астрономии и поколебал позиции церкви, которую вполне устраивала птолемеевская Вселенная, близкая к библейской картине мира.

Тот, кто «перевернул» Вселенную

К 16 в. большинству европейских астрономов стало окончательно ясно, что система Птолемея приводит к таким серьезным ошибкам, что и в целом вызывает сомнения. Кое-кто пытался «усовершенствовать» ее, но от этого представления о том, как в действительности выглядит движение звезд, планет, Солнца и Луны, окончательно запутались. Польский астроном Николай Коперник (1473— 1543) стал тем человеком, который впервые за полтора тысячелетия предложил иную — намного более простую и ясную систему мира. Для этого ему понадобилось 30 лет упорного труда, наблюдений, размышлений и немало настоящего мужества. Согласно гелиоцентрической модели Солнечной системы, предложенной Коперником, в центре ее находится Солнце, а Земля является одной из планет, обращающихся вокруг центрального светила. Ученый правильно расположил планеты по их расстоянию от Солнца и отвел в этом ряду Земле третье место. Коперник считал, что человек воспринимает движение небесных тел примерно так же, как и перемещение различных предметов, находящихся на поверхности Земли, когда сам он находится в движении. Наблюдателю, находящемуся на Земле, кажется, что Земля неподвижна, а Солнце движется вокруг нее. На самом же деле Земля движется по орбите вокруг Солнца и в течение года совершает полный оборот вокруг него.

Имя человека, «перевернувшего» Вселенную, описанную Клавдием Птолемеем, сегодня известно всему миру. Николай Коперник первым отказался от ошибочного взгляда, согласно которому Земля является центром мироздания, а его идеи вскоре получили самое широкое распространение, несмотря на то что церковь объявила учение Коперника ересью, а его главный труд «Об обращении небесных сфер» был занесен в список запрещенных книг.

В одном из писем к друзьям Николай Коперник писал, опережая открытия Исаака Ньютона: «Я думаю, что тяжесть есть не что иное, как стремление, которым божественный Зодчий одарил частицы материи, чтобы они соединялись в форме шара. Этим свойством, вероятно, обладают Солнце, Луна и планеты; ему эти светила обязаны своей шаровидной формой».

Астрономия в Эпоха Великих географических открытий

В 15 в. в истории человечества началась Эпоха Великих географических открытий. Отважные мореходы и землепроходцы открывали неведомые острова и целые материки, прокладывали новые морские пути. Совершать небывалые по продолжительности и дальности путешествия, во время которых европейцы исследовали берега Африканского континента, достигли Америки и, наконец, обогнули земной шар, помогли развитие навигации и картографии, которые опирались на достижения астрономии.

Небесная мера

Именно в связи с развитием мореплавания начала развиваться астрометрия — раздел астрономии, посвященный методам точного определения положения небесных тел и их скоростей. Одним из важнейших достижений астрометрии стало создание звездных каталогов. Один из самых ранних был составлен еще в Древнем Китае астрономом Ши Шэнем, однако он был не в полном смысле каталогом с указанием небесных координат светил, а, скорее, схематической картой звездного неба. Первый настоящий астрометрический каталог, содержащий координаты звезд, создан древнегреческим астрономом Гиппархом около 129 г. до н. э. А в 13 столетии в Толедо под покровительством короля Кастилии Альфонсо Мудрого открылась первая в Европе обсерватория, где в 1252 г. были составлены так называемые «Альфонсинские таблицы», которые отличались замечательной точностью и использовались больше двух столетий.

Огромную роль в развитии астрометрии в 15 в. сыграли два австрийских астронома — Георг Пурбах (1423—1461) и его ученик Региомонтан (1436—1476). Оба они были первыми в Европе учеными, не имевшими духовного сана. После длительных наблюдений эти астрономы убедились, что все существовавшие в их время астрономические таблицы устарели. Пурбах и Региомонтан составили новый учебник астрономии и таблицы — «Эфемериды», которыми пользовались в своих путешествиях к берегам Нового Света Христофор Колумб и Америго Веспуччи.

Астрономическая навигация

Без механических часов и точных астрономических приборов проложить верный курс корабля можно было только с помощью наблюдений за небесными светилами. Для того чтобы определить направление на географический север достаточно было найти на небосклоне Полярную звезду, а по положению Солнца в полдень всегда можно более или менее точно определить направление на географический юг. Одним из главных недостатков астрономической навигации была зависимость от облачности, мешавшей точно определять положение светил.

Чтобы отыскать Полярную звезду, надо сначала найти на небосклоне семь ярких звезд созвездия Большая Медведица, напоминающего ковш. Затем через две звезды «стенки» ковша, противоположной его «ручке», следует мысленно провести прямую и отложить на ней пять расстояний между этими крайними звездами. На конце этого отрезка — «в хвосте» созвездия Малая Медведица — находится Полярная звезда, или альфа Малой Медведицы.

В разные эпохи роль Полярной звезды играли разные светила. Земная ось имеет наклон около 23 градусов, но совершает колебания, отклоняясь на 0,5 градуса каждые 100 лет. Поэтому и положение Северного полюса мира для земного наблюдателя меняется. Для древних египтян Полярной звездой служила альфа Дракона, в начале нашей эры ярких звезд у полюса мира вообще не было, а через 2 тыс. лет ближайшей Полярной станет звезда гамма Цефея.

Открытие южного неба

До Эпохи Великих географических открытий европейцам были известны лишь созвездия северного неба и зодиакального пояса. И только в 1589 г. датский астроном и картограф Петер Планциус изготовил звездный глобус, на котором были показаны четыре новых объекта южного неба: два тогда еще безымянных Магеллановых облака, созвездия Южный Крест и Южный Треугольник. В 1592 г. Планциус издал большую карту мира, на которой были помещены небесные планисферы с созвездиями Голубь и Страж Полюса.

В 1595—1596 гг. голландский штурман Питер Кейзер составил каталог 135 наиболее ярких звезд южного неба, недоступных для наблюдателей в Северном полушарии.

Этим каталогом воспользовался Планциус, составив из 122 звезд, внесенных в каталог, 12 новых созвездий, большинство из которых носят «морские» названия.

Галилео Галилей и его открытия

Великий итальянский ученый Галилео Галилей (1564— 1642) — философ и математик, основатель современной астрономии, физик и механик — был звездой первой величины на европейском научном небосклоне. Он первым использовал телескоп собственной конструкции для наблюдения планет, открыл горы на Луне, четыре спутника Юпитера, фазы, подобные лунным, у Венеры, пятна на Солнце. Галилей был горячим сторонником гелиоцентрической системы мира Николая Коперника, а его научная честность едва не привела знаменитого астронома на костер.

Волшебные линзы

Имя создателя первого телескопа до сих пор в точности не известно. Но уже в трудах английского философа 13 в. Роджера Бэкона встречаются упоминания об оптических приборах, напоминающих телескоп, и честь этого изобретения приписывается ему.

И все-таки первым исследователем, который осуществил астрономические наблюдения с помощью телескопа-рефрактора, стал Галилео Галилей.

В 1609 г. он создал собственную конструкцию зрительной трубы с двумя линзами и впервые применил этот прибор для наблюдения за объектами на небе.

Первым же результатом использования нового прибора стали многочисленные подтверждения истинности учения Коперника.

С помощью своего телескопа, который имел всего лишь тридцатикратное увеличение, великий астроном открыл, что у планеты Венеры имеются фазы — такие же, как у Луны. На Луне Галилей обнаружил горы, подобные тем, которые существуют на Земле, и измерил их высоту. Так мало-помалу обнаруживалось сходство в строении тел Солнечной системы, и становилось легче поверить, что Земля — всего лишь одно из таких тел.

У планеты Юпитер Галилей открыл четыре спутника. Их обращение вокруг Юпитера опровергало представление о том, что лишь Земля может быть центром, вокруг которого обращаются светила. На Солнце Галилей обнаружил пятна, и по их перемещению по солнечному диску заключил, что Солнце вращается вокруг собственной оси.

В 1632 г. увидел свет труд Галилея «Диалог о двух главнейших системах мира — птолемеевой и коперниковой». Церковь немедленно наложила на нее запрет, а сам астроном был вызван в Рим для разбирательства в суде инквизиции. Следствие продолжалось несколько месяцев. 22 июня 1633 г. в той же церкви, где был оглашен смертный приговор Джордано Бруно, Галилей, стоя на коленях, произнес предложенный ему текст отречения от «ереси». Что на самом деле вовсе не означало, что он отказался от своих взглядов.

Открытия Иоганна Кеплера

Заслуга открытия законов движения планет принадлежит выдающемуся немецкому астроному, оптику, математику и астрологу при дворе императора Рудольфа II Иоганну Кеплеру (1571 —1630). Внимательно изучив собранные за многие годы его предшественниками данные о движении планет Солнечной системы, Кеплер пришел к выводу, что орбита Марса представляет собой не круг, а эллипс, в одном из фокусов которого находится Солнце. Затем ему удалось установить, что чем дальше планета находится от Солнца, тем медленнее она движется. В 1618 г. великий астроном с помощью вычислений открыл еще одну важнейшую закономерность: отношение куба среднего расстояния планеты от Солнца к квадрату периода ее обращения вокруг Солнца есть величина постоянная.

«Я выяснил, — писал Кеплер, — что все небесные движения, как в целом, так и во всех отдельных случаях, проникнуты общей гармонией». Открытые им законы полностью объясняли видимые даже без приборов неравномерности в движении планет, позволяли определить форму их орбит, скорость и период обращения вокруг Солнца.

Астрономия в 17-19 веках

За два с небольшим столетия — с 17 по 19 век — мир изменился больше, чем за два предшествующих тысячелетия. Эпоха Великих географических открытий расширила горизонты мира для жителей Европы, на континент из колоний потекли громадные богатства, за счет внедрения новых культурных растений произошла настоящая революция в сельском хозяйстве, а наука стояла на пороге неслыханных открытий. Как только разбогатевшие в ходе колониальных захватов правители Европы поняли, что средства, вложенные в научные исследования, могут вернуться с прибылью, они стали щедрее финансировать науку, и открытия посыпались одно за другим.

В 1610 г. была открыта туманность Ориона, двумя годами позже — Туманность Андромеды. В середине 17 в. была составлена подробная карта Луны, а голландский астроном и механик Х. Гюйгенс обнаружил спутник Сатурна Титан и кольца Сатурна. Тогда же французский астроном Дж. Кассини впервые заметил на диске Юпитера удивительное явление — Большое Красное Пятно, а позднее он же открыл «щель Кассини» в кольцах Сатурна. К 1675 г. была определена скорость света, а британский астроном Э. Галлей вычислил орбиты 24 комет и впервые предсказал новое появление одной из комет в 1758 г., что с блеском подтвердилось.

Исследование движения комет заставило астрономов навсегда забыть о «небесных сферах» и стало окончательным доказательством истинности теории всемирного тяготения, созданной Исааком Ньютоном.

«Разумом он превосходил род человеческий»

Эта надпись высечена на статуе Исаака Ньютона (1643—1727), воздвигнутой в Кембридже. Великий английский математик, механик, астроном и физик, создатель классической механики появился на свет в семье простого фермера в год смерти Галилео Галилея, прожил долгую жизнь и совершил в науке столько открытий, что хватило бы еще на десяток жизней. Даже для того чтобы перечислить все научные достижения Исаака Ньютона нужен не один десяток страниц.

Он создал корпускулярную теорию света, предположив, что свет — это поток мельчайших частиц, открыл дисперсию света, интерференцию и дифракцию. Им был построен первый зеркальный телескоп — прообраз тех гигантских телескопов, которые сегодня установлены в крупнейших обсерваториях мира. Ньютон открыл фундаментальный закон всемирного тяготения и главные законы классической механики, разработал теорию небесных тел, а его трехтомный труд «Математические начала натуральной философии» принес ученому всемирную славу.

Работы ученого часто оставались непонятыми современниками, он подвергался жестокой критике со стороны коллег — математиков и астрономов, однако в 1705 г. королева Великобритании Анна возвела сына простого фермера в рыцарское достоинство. Впервые в истории звание рыцаря было присвоено за научные заслуги.

В 1661 г. юный Исаак Ньютон поступил в Тринити-колледж Кембриджского университета.

Уже тогда сложился его сильный и мужественный характер — он стремился во всем дойти до сути, не терпел лжи, был равнодушен к славе. В колледже Ньютон погрузился в изучение трудов своих предшественников — Галилея, Декарта, Кеплера, а также математиков Ферма и Гюйгенса. В 1664 г. в Кембридже вспыхнула эпидемия чумы, и Ньютону пришлось вернуться в родную деревню. Он провел в ней два года, и за это время совершил все свои главные математические открытия, сформулировал закон всемирного тяготения и доказал, что белый солнечный свет является смесью многих цветов.

Недаром говорят, что величайшие научные открытия совершаются чаще всего совсем молодыми людьми. Однако все эти эпохальные научные достижения были опубликованы лишь через двадцать, а некоторые и через сорок лет. Стремление не только открыть, но и всесторонне доказать истину всегда оставалось для Ньютона главным.

Труды великого британца открыли перед современниками совершенно новую картину мира. Оказалось, что небесные тела, находящиеся на огромных расстояниях друг от друга, связаны между собой силами тяготения в единую систему. В ходе своих исследований Ньютон определил массу и плотность планет и Солнца и установил, что самые близкие к Солнцу планеты отличаются наибольшей плотностью. Он также доказал, что Земля не идеальный шар: она «сплюснута» у полюсов и «вздута» у экватора, а приливы и отливы в Мировом океане объясняются действием притяжения Луны и Солнца.

Тихо Браге и его Ураниборг

На датском острове Вэн в проливе Эресунн во второй половине 17 в. высился необычный замок, в котором жил не знатный вельможа, а выдающийся ученый. Замок этот, носивший название Ураниборг — в честь музы Урании, покровительницы астрономии, — был первым в Европе зданием, специально построенным для астрономических наблюдений, и владел им выдающийся датский астроном, астролог и алхимик Тихо Браге (1546—1601).

Всю свою жизнь Тихо Браге посвятил наблюдениям неба. Благодаря неустанному труду и изобретательности он добился таких результатов, которые и не снились его современникам-астрономам. Иоганн Кеплер позднее писал, что именно Тихо Браге начал «восстановление астрономии».

Инструменты для своей обсерватории Тихо Браге обычно изготавливал сам, но самые знаменитые из них — большой квадрант высотой в 11 м, секстант и небесный глобус диаметром полтора метра, которым астроном очень гордился, были созданы мастерами из немецкого города Аугсбурга. Тихо Браге составил новые точные солнечные таблицы и измерил продолжительность года с ошибкой меньше секунды. В 1592 г. он опубликовал каталог, включавший 777 звезд, а еще через шесть лет довел число звезд в своем каталоге до 1004. Наблюдая за движением Луны, Браге открыл неравномерности в ее движении и периодические изменения наклона ее орбиты по отношению к плоскости эклиптики.

Датский астроном был первым европейцем, обнаружившим вспышку сверхновой звезды в созвездии Кассиопеи — в течение предыдущих пяти веков ничего подобного в нашей Галактике не происходило. Он первым пришел к выводу о внеземном происхождении комет и твердо отстаивал эту точку зрения, хотя со времен античности кометы считались атмосферным явлением.

Тихо Браге глубоко чтил Николая Коперника. Браге даже сочинил восторженную оду в его честь. Однако в систему Коперника Браге… не верил! И никакие аргументы не могли его переубедить. Больше того — этот крупнейший астроном, без чьих наблюдений Иоганн Кеплер не смог бы открыть законы движения планет, не признавал вращения Земли, а его модель Солнечной системы выглядела примерно так: Солнце, Луна и звезды вращаются вокруг неподвижной Земли, а все планеты и кометы — вокруг Солнца.

Источник: SiteKid.ru

Как возникла наука астрономия краткоАстрономия — древнейшая наука. Она воз­никла, как указывал один из великих осново­положников научного коммунизма — Фридрих Энгельс, в связи с практическими потребно­стями людей.

Основным занятием древнейших народов было скотоводство и земледелие. Поэтому им нужно было иметь представление о явлениях природы, об их связи с временами года. Люди знали, что смена дня и ночи обусловлена вос­ходом и заходом Солнца. В древнейших госу­дарствах: Египте, Вавилонии, Индии и других— земледелие и скотоводство регулировались та­кими сезонными (т. е. повторяющимися в одни и те же времена года) явлениями природы, как разливы больших рек, наступление периода дождей, смена теплой и холодной погоды и т. д.

Давние наблюдения неба привели к открытию связи между сменой времен года и такими не­бесными явлениями, как изменение полуден­ной высоты Солнца в течение года, появление на небе с наступлением вечерней темноты яр­ких звезд.

Таким образом, еще в глубокой древности были заложены основы календаря, в котором основной мерой для счета времени стали сутки (смена дня и ночи), месяц (промежуток между двумя новолуниями) и год (время видимого пол­ного оборота Солнца по небу среди звезд). Календарь был необходим в первую очередь для того, чтобы с известной точностью рас­считывать время начала полевых работ. Еще в седой древности была установлена приблизи­тельная продолжительность года — 3651/4 су­ток. На самом деле продолжительность года (т. е. периода обращения Земли вокруг Солнца) составляет 365 дней 5 часов 48 минут 46 секунд— на 11 минут 14 секунд меньше, чем 365 1/4 су­ток. Эта «приблизительность» давала себя знать тем, что с течением времени календарь расхо­дился с природой; ожидаемые сезонные явле­ния наступали несколько раньше, чем они долж­ны были наступить по календарю. С каждым годом это расхождение увеличивалось, и нужны были наблюдения неба и земных явлений, чтобы постоянно уточнять календарь, «сближать» его с природой. Такие наблюдения и велись в неко­торых странах Древнего Востока.Как возникла наука астрономия кратко

С течением времени было обнаружено, что, кроме Солнца и Луны, есть еще пять светил, которые постоянно перемещаются по небу среди звезд. Эти «блуждающие» светила — плане­ты — впоследствии были названы Меркури­ем, Венерой, Марсом, Юпитером и Сатурном. Наблюдения позволили также подметить на небе очертания наиболее характерных созвездий и установить периодичность наступления таких явлений, как солнечные и лунные затмения.

Наблюдая небесные явления на протяжении тысячелетий, люди еще не знали вызывающих их причин. Звезды и планеты они видели как светящиеся точки на небе, но об их действитель­ной природе, так же как и о природе Солнца и Луны, им ничего не было известно. Не понимая природы небесных светил, не зная законов раз­вития человеческого общества и истинной при­чины войн и болезней, люди обожествляли све­тила, приписывали им влияние на судьбы лю­дей и народов. Так возникла лженаука астро­логия, пытавшаяся предсказывать судьбы лю­дей по движениям небесных светил. Подлинная наука давно опровергла выдумки астрологии.

Наука и религия глубоко враждебны друг другу. Наука открывает законы природы и помогает людям на основе этих законов исполь­зовать природу в своих интересах. Религия, наоборот, всегда внушала людям чувство бес­помощности и страха перед природой. Она всегда опиралась не на знания, а на суеверия и предрассудки и мешала развитию науки. В древности, когда люди не знали законов при­роды, влияние религии и ее служителей — жре­цов — на народ было особенно сильным. Так как жрецы играли большую роль в хозяйственной и политической жизни древневосточных госу­дарств, они были заинтересованы в астрономи­ческих наблюдениях и широко использовали их; эти наблюдения им были нужны и для уста­новления дат религиозных праздников.

Однако хозяйственный уклад древних го­сударств с их примитивным земледелием, ско­товодством и ремеслом, основанным на ручном труде рабов, не требовал еще сколько-нибудь высокого развития науки и техники. Поэтому астрономические наблюдения, проводившиеся в государствах Древнего Востока — Египте, Вави­лонии, Индии — на протяжении многовековой истории, не могли привести к созданию астрономии как науки, способной объяснить устройст­во Вселенной.

Однако уже тогда астрономы стран Древнего Востока достигли больших успехов в своих наблю­дениях неба, научились предсказывать насту­пление затмений и настойчиво следили за дви­жением планет.

Задолго до нашей эры астрономы состав­ляли так называемые звездные каталоги — списки наиболее ярких звезд с указанием их положения на небе.

Астрономические знания, накопленные в Египте и Вавилоне особенно в VI—V вв. до н. э., заимствовали древние греки. В древ­ней Греции имелись более благоприятные условия для развития науки.

Первые греческие ученые в это время пыта­лись доказать, что Вселенная существует без участия божественных сил. Греческий фило­соф Фалес в VI в. до н. э. учил, что все сущест­вующее в природе — и Земля к небо — возник­ло из одного «первоначального» элемента — воды. Другие ученые считали таким «первоначальным» элементом огонь или воздух. В VI в. до н. э. греческий философ Гераклит высказал гениальную мысль, что Вселенная никогда ни­кем не была создана, она всегда была, есть и будет, что в ней нет ничего неизменного — все движется, изменяется, развивается. Эта замеча­тельная мысль Гераклита впоследствии легла в основу подлинной науки, изучающей законы развития природы и человеческого общества.Как возникла наука астрономия кратко

Многие греческие ученые, однако, наивно полагали, что Земля — самое крупное тело во Вселенной и находится в ее центре. При этом они вначале считали Землю неподвижным плоским телом, вокруг которого обращаются Солн­це, Луна и планеты.

Позднее, систематически наблюдая природу, ученые пришли к выводу, что Вселенная и Земля, на которой мы живем, устроены гораздо сложнее, чем это представ­ляется неискушенному наблюдателю. В конце VI в. до н. э. Пифагор впервые, а за ним в V в. Парменид высказали предположение, что Земля — тело не плоское, а шарообразное.

Крупным достижением науки было учение греческих философов Левкиппа и Демокрита. Они утверждали, что все существующее со­стоит из мельчайших частиц материи — атомов и что все явления природы совершаются без какого-либо участия богов и других сверхъесте­ственных сил.Позднее, в IV в. до н. э., с изложением своих взглядов на устройство Вселенной вы­ступил Аристотель —величайший из ученых и философов Греции. Аристотель занимался всеми науками, которые были известны в ту эпоху, — физикой, минералогией, зоологией и др. Он много занимался также вопросами формы Земли и ее положения во Вселенной. При помощи остроумных соображений Аристотель доказал шарообразность Земли. Он утверждал, что лунные затмения происходят, когда Луна попадает в тень, отбрасываемую Землей. На ди­ске Луны мы видим край земной тени всегда круглым. И сама Луна имеет выпуклую, скорее всего шарообразную форму.

Таким путем Аристотель пришел к выводу, что Земля, безусловно, шарообразна и что шарообразны, по-видимому, все небесные тела.

В то же время Аристотель считал Землю центром Вселенной, крупнейшим ее телом, во­круг которого обращаются все небесные тела. Вселенная, по мнению Аристотеля, имеет конеч­ные размеры — ее как бы замыкает сфера звезд. Своим авторитетом, который и в древности, и в средние века считался непререкаемым, Аристо­тель закрепил на много веков ложное мнение, что Земля — неподвижный центр Вселенной. Это мнение разделяли и позднейшие греческие ученые. В дальнейшем его приняла как непре­ложную истину христианская церковь.

Впоследствии, уже в XVIII в., великий рус­ский ученый М. В. Ломоносов, всю жизнь стра­стно боровшийся за торжество науки над суе­верием, оглядываясь на прошлые века, писал, что в течение многих веков «идолопоклонниче­ское суеверие держало астрономическую Землю в своих челюстях, не давая ей двигаться».Как возникла наука астрономия кратко

Однако и в Греции после Аристотеля неко­торые передовые ученые высказывали смелые и правильные догадки об устройстве Вселенной.

Живший в III в. до н. э. Аристарх Самосский считал, что Земля обращается вокруг Солнца. Расстояние от Земли до Солнца он оп­ределил в 600 диаметров Земли. На самом деле это расстояние в 20 раз меньше действитель­ного, но по тому времени и оно казалось нево­образимо огромным. Однако это расстояние Ари­старх считал ничтожным по сравнению с рас­стоянием от Земли до звезд. Эти гениальные мысли Аристарха, через много веков подтверж­денные открытием Коперника, не были поняты современниками. Аристарха обвинили в безбо­жии и осудили на изгнание, а его правильные догадки были забыты.

В конце IV в. до н. э. после походов и за­воеваний Александра Македонского греческая культура проникла во все страны Ближнего Востока. Возникший в Египте город Александ­рия стал крупнейшим культурным центром. В Александрийской академии, объединявшей ученых того времени, в течение нескольких веков велись астрономические наблюдения уже при помощи угломерных инструментов. Алек­сандрийские астрономы достигли большой точ­ности в своих наблюдениях и внесли много но­вого в астрономию.

В III в. до н. э. александрийский ученый Эратосфен впервые определил размеры земного шара.

Во II в. до н. э. великий александрийский астроном Гиппарх, используя уже накоплен­ные наблюдения, составил каталог более чем 1000 звезд с довольно точным определением их положения на небе. Гиппарх разделил зве­зды на группы и к каждой из них отнес звезды примерно одинакового блеска. Звезды с наи­большим блеском он назвал звездами первой величины, звезды с несколько меньшим бле­ском — звездами второй величины и т. д. Гиппарх ошибочно считал, что все звезды находят­ся от нас на одинаковом расстоянии и что раз­ница в их блеске зависит от их размеров.

В действительности дело обстоит иначе: звезды находятся на различных расстояниях от нас. Поэтому звезда огромных размеров, но находящаяся на очень большом расстоянии от нас, будет по своему блеску казаться звездой далеко не первой величины. Наоборот, звезда первой величины может быть по своим разме­рам весьма скромной, но находиться сравнитель­но близко от нас. Однако гиппарховы «величи­ны» как обозначение видимого блеска звезд сохранились до нашего времени.

Гиппарх правильно определил размеры Луны и ее расстояние от нас. Сопоставляя результаты личных наблюдений и наблюдений своих пред­шественников, он вывел продолжительность солнечного года с очень малой ошибкой (только на 6 минут).

Позднее, в I в. до н. э., александрийские астрономы участвовали в реформе календаря, предпринятой римским диктатором Юлием Це­зарем. Этой реформой был введен календарь, действовавший в Западной Европе до XVI—XVIII вв., а в нашей стране — до Великой Ок­тябрьской социалистической революции.

Гиппарх и другие астрономы его времени уделяли много внимания наблюдениям за дви­жением планет. Эти движения представлялись им крайне запутанными. В самом деле, направле­ние движения планет по небу как будто перио­дически меняется — планеты как бы описывают по небу петли. Эта кажущаяся сложность в дви­жении планет вызывается движением Земли во­круг Солнца — ведь мы наблюдаем планеты с Земли, которая сама движется. И когда Земля «догоняет» другую планету, то кажется, что планета как бы останавливается, а потом дви­жется назад. Но древние астрономы, считавшие Землю неподвижной, думали, что планеты дей­ствительно совершают такие сложные движения вокруг Земли. Во II в. н. э. александрийский астроном Пто­лемей выдвинул свою «систему мира». Он пы­тался объяснить устройство Вселенной с учетом видимой сложности движения планет.

Считая Землю шарообразной, а размеры ее ничтожными по сравнению с расстоянием до планет и тем более до звезд, Птолемей, однако, вслед за Аристотелем утверждал, что Земля — неподвижный центр Вселенной. Так как Пто­лемей считал Землю центром Вселенной, его система мира была названа геоцентри­ческой1.

Вокруг Земли, по Птолемею, движутся (в по­рядке удаленности от Земли) Луна, Меркурий, Венера, Солнце, Марс, Юпитер, Сатурн, звез­ды. Но если движение Луны, Солнца, звезд правильное круговое, то движение планет гораздо сложнее. Каждая из планет, по мнению Птолемея, движется не вокруг Зем­ли, а вокруг некоторой точки. Точка эта в свою очередь движется по кругу, в центре ко­торого находится Земля. Круг, описываемый планетой вокруг движущейся точки, Птолемей назвал эпициклом, а круг, по которому движется точка около Земли,— деферентом.

Трудно представить себе, чтобы в природе могли совершаться такие запутанные движения, да еще вокруг воображаемых точек. Такое искусственное построение потребовалось Пто­лемею для того, чтобы, основываясь на ложном представлении о неподвижности Земли, распо­ложенной в центре Вселенной, объяснить ви­димую сложность движения планет.

Птолемей был блестящим для своего време­ни математиком. Но он разделял взгляд Ари­стотеля, который считал, что Земля неподвиж­на и только она может быть центром Вселенной.Система мира Аристотеля — Птолемея ка­залась современникам правдоподобной. Она да­вала возможность заранее вычислять движение планет на будущее время — это было необхо­димо для ориентировки в пути во время путеше­ствий и для календаря. Эту ложную систему признавали почти полторы тысячи лет.

Геоцентрическая система мира Птолемея появилась в то время, когда и Египет и Греция уже были завоеваны Римом. Потом пришла в упадок Римская империя, к которому ее при­вели изживший себя рабовладельческий строй, войны и нашествия других народов. Наряду с разрушением огромных городов истреблялись памятники греческой науки. На смену рабовладельческому строю при­шел феодальный строй. Христианская религия, распространившаяся к этому времени в стра­нах Европы, признала геоцентрическую систе­му мира согласной со своим учением.

В основу своего миропонимания христиан­ство положило библейскую легенду о сотворе­нии мира богом за шесть дней. По этой легенде Земля является «средоточием» Вселенной, а не­бесные светила созданы для того, чтобы осве­щать Землю и украшать небесный свод. Всякое отступление от этих взглядов христианство беспощадно преследовало. Система мира Ари­стотеля — Птолемея, ставившая Землю в центр мироздания, как нельзя лучше отвечала хри­стианскому вероучению, хотя многие «отцы церк­ви» отказывались признавать именно те положе­ния этой системы мира, которые были верными, например положение о шарообразности Земли. В христианских странах получило признание и широко распространилось «учение» монаха Козьмы Индикоплова, считавшего Землю пло­ской, а небо как бы «крышкой» над ней. Это учение было возвращением к самым примитив­ным представлениям древнейших народов об устройстве Вселенной.

 

1 Гео — по-гречески «земля».

Источник: enciklopediya1.ru

Астрономия является одной из древнейших наук, истоки которой относятся к каменному веку (VI-III тысячелетия до н. э.).

Астрономия это наука, изучающая движение, строение, происхождение и развитие небесных тел и их систем.

Астрономия [греч. Астрон (astron) — звезда, номос (nomos) -закон] – наука, которая изучает движение небесных тел (раздел “небесная механика”), их природу (раздел “астрофизика”), происхождение и развитие (раздел “космогония”)

Астрономия – одна из самых увлекательных и древнейших наук о природе – исследует не только настоящее, но и далекое прошлое окружающего нас макромира, а также позволяет нарисовать научную картину будущего Вселенной. Человека всегда интересовал вопрос о том, как устроен окружающий мир и какое место он в нем занимает. У большинства народов еще на заре цивилизации были сложены особые — космологические мифы, повествующие о том, как из первоначального хаоса постепенно возникает космос (порядок), появляется все, что окружает человека: небо и земля, горы, моря и реки, растения и животные, а также сам человек. На протяжении тысячелетий шло постепенное накопление сведений о явлениях, которые происходили на небе.

Оказалось, что периодическим изменениям в земной природе сопутствуют изменения вида звездного неба и видимого движения Солнца. Высчитать наступление определенного времени года было необходимо для того, чтобы в срок провести те или иные сельскохозяйственные работы: посев, полив, уборку урожая. Но это можно было сделать лишь при использовании календаря, составленного по многолетним наблюдениям положения и движения Солнца и Луны. Так необходимость регулярных наблюдений за небесными светилами была обусловлена практическими потребностями счета времени. Строгая периодичность, свойственная движению небесных светил, лежит в основе основных единиц счета времени, которые используются до сих пор, — сутки, месяц, год.

Простое созерцание происходящих явлений и их наивное толкование постепенно сменялись попытками научного объяснения причин наблюдаемых явлений. Когда в Древней Греции (VI в. до н. э.) началось бурное развитие философии как науки о природе, астрономические знания стали неотъемлемой частью человеческой культуры. Астрономия — единственная наука, которая получила свою музу-покровительницу — Уранию.

О первоначальной значимости развития астрономических знаний можно судить в связи с практическими потребностями людей. Их можно разделить на несколько групп:

  • cельскохозяйственные потребности (потребность в отсчете времени — сутки, месяцы, годы. Например, в Древнем Египте определяли время посева и уборки урожая по появлению перед восходом солнца из-за края горизонта яркой звезды Сотис — предвестника разлива Нила);
  • потребности в расширении торговли, в том числе морской (мореплавание, поиск торговых путей, навигация. Так, финикийские мореплаватели ориентировались по Полярной звезде, которую греки так и называли — Финикийская звезда);
  • эстетические и познавательные потребности, потребности в целостном мировоззрении (человек стремился объяснить периодичность природных явлений и процессов, возникновение окружающего мира).

Зарождение астрономии в астрологических идеях свойственно мифологическому мировоззрению древних цивилизаций.

Этапы развития астрономии

I-й Античный мир (до н. э). Философия →астрономия → элементы математики (геометрия). Древний Египет, Древняя Ассирия, Древние Майя, Древний Китай, Шумеры, Вавилония, Древняя Греция.

Ученые, внесшие значительный вклад в развитие астрономии: ФАЛЕС Милетский (625-547, Др.Греция), ЕВДОКС Книдский (408- 355, Др. Греция), АРИСТОТЕЛЬ (384-322, Македония, Др. Греция), АРИСТАРХ Самосский (310-230, Александрия, Египет), ЭРАТОСФЕН (276-194, Египет), ГИППАРХ Родосский (190-125г, Др.Греция).

Археологами установлено, что человек владел начальными астрономическими знаниями уже 20 тыс. лет назад в эпоху каменного века.

  • Доисторический этап от 25 тыс.лет до н.э.- до 4 тыс. до н.э.(наскальные рисунки, природные обсерватории и т.д.).
  • Древний этап условно можно считать от 4.000лет до н.э.-1000 до н.э.:
    • около 4.тыс. лет до н.э. астрономические памятники древних майя, каменная обсерватория Стоунхендж ( Англия);
    • около 3000 лет до н.э. ориентировка пирамид, первые астрономические записи в Египте, Вавилоне, Китае;
    • около 2500лет до н.э. установление египетского солнечного календаря;
    • около 2000 лет до н.э. создание 1-ой карты неба (Китай);
    • около 1100 лет до н.э. определение наклона эклиптики к экватору;
  • Античный этап
    • идеи о шарообразности Земли (Пифагор, 535 г. до н.э.);
    • предсказание Фалесом Милетским солнечного затмения (585 г. до н.э.);
    • установление 19-летнего цикла лунных фаз (цикл Метона, 433 г. до н.э);
    • идеи о вращении Земли вокруг оси ( Гераклит Понтийский, 4 век до н.э);
    • идея концентрических кругов (Евдокс), трактат «О Небе» Аристотель (доказательство шарообразности Земли и планет) составление первого каталога звёзд 800 звёзд, Китай (4 век до н.э.);
    • начало систематических определений положений звёзд греческими астрономами, развитие теории системы мира (3 век до н.э.);
    • открытие прецессии, первые таблицы движения Солнца и Луны, звездный каталог 850 звезд (Гиппарах, (2 Век до н.э);
    • идея о движении Земли вокруг Солнца и определение размеров Земли (Аристарх Самосский, Эратосфен 3-2 в. до н.э.);
    • введение в римской империи Юлианского календаря (46 г. до н.э);
    • Клавдий Птолемей – «Синтаксис»(Альмогест)-энциклопедия античной астрономии, теория движения, планетные таблицы (140 г. н.э).

Представление об астрономических познаниях греков этого периода дают поэмы Гомера и Гесиода: там упоминается ряд звёзд и созвездий, приводятся практические советы по использованию небесных светил для навигации и для определения сезонов года. Космологические представления этого периода целиком заимствовались из мифов: Земля считается плоской, а небосвод — твёрдой чашей, опирающейся на Землю. Главными действующими лицами этого периода являются философы, интуитивно нащупывающие то, что впоследствии будет названо научным методом познания. Одновременно проводятся первые специализированные астрономические наблюдения, развивается теория и практика календаря; в основу астрономии впервые полагается геометрия, вводится ряд абстрактных понятий математической астрономии; делаются попытки отыскать в движении светил физические закономерности. Получили научное объяснение ряд астрономических явлений, доказана шарообразность Земли.

II-ой Дотелескопический период. (наша эра до 1610г). Упадок науки и астрономии. Развал Римской империи, набеги варваров, зарождение христианства. Бурное развитие арабской науки. Возрождение науки в Европе. Современная гелиоцентрическая система строения мира.

Ученые, внесшие значительный вклад в развитие астрономии в данный период: Клавдий ПТОЛЕМЕЙ (Клавдиус Птоломеус)( 87-165, Др. Рим ), БИРУНИ, Абу Рейхан Мухаммед ибн Ахмед аль – Бируни (973-1048, совр. Узбекистан), Мирза Мухаммед ибн Шахрух ибн Тимур (Тарагай) УЛУГБЕК(1394 –1449, совр. Узбекистан), Николай КОПЕРНИК (1473-1543,Польша), Тихо (Тиге) БРАГЕ (1546- 1601, Дания).

  • Арабский период. После падения античных государств в Европе античные научные традиции (в том числе и астрономии) продолжили развитие в арабском халифате, а также в Индии и Китае
    • 813г. Основание в Багдаде астрономической школы (дом мудрости);
    • 827г. определение  размеров земного шара по градусным измерениям между Тигром и Евфратом;
    • 829г. основание Багдадской обсерватории;
    • Х в. открытие лунного неравенства (Абу-ль-Вафа, Багдад);
    • каталог 1029 звёзд, уточнение наклона эклиптики к экватору, определение длинны 1° меридиана (1031г, Ал-Бируни);
    • многочисленные работы по астрономии до конца 15 века (календарь Омара Хайяма, «Ильханские таблицы» движения Солнца и планет(Насирэддин Тусси, Азербайджан), работы Улугбека);
  • Европейское возрождение. В конце 15 века начинается возрождение астрономических знания в Европе, которое привело к первой революции в астрономии. Эта революция в астрономии была вызвана требованиями практики – начиналась эпоха великих географических открытий.
    • Дальние плавания требовали точных методов определения координат. Система Птолемея не могла обеспечить возросших потребностей. Страны, которые первыми обратили внимание на развитие астрономических исследований, добивались наибольших успехов в открытии и освоении новых земель.
    • В Португалии, еще в 14 веке принц Генрих основал обсерваторию для обеспечения потребностей мореплавания, и Португалия первая из Европейских стран начала захват и эксплуатацию новых территорий.
    • Важнейшие достижения европейской астрономии XV — XVI веков это планетные таблицы (Региомонтан из Нюрнберга, 1474г.),
    • работы Н.Коперника, которые произвели первую революцию в Астрономии (1515-1540 гг.),
    • наблюдения датского астронома Тихо Браге в обсерватории Ураниборг на острове Вэн (самые точные в дотелескопическую эпоху).

III-ий Телескопический до появления спектроскопии (1610-1814гг). Изобретение телескопа и наблюдения с его помощью. Законы движения планет. Открытие планеты Уран. Первые теории образования Солнечной системы.

Ученые, внесшие значительный вклад в развитие астрономии в данный период: Галилео ГАЛИЛЕЙ (1564-1642, Италия), Иоганн КЕПЛЕР (1571-1630, Германия), Ян ГАВЕЛИЙ (ГАВЕЛИУС) (1611-1687, Польша), Ганс Христиан ГЮЙГЕНС (1629-1695, Нидерланды), Джованни Доминико (Жан Доменик) КАССИНИ> (1625-1712, Италия-Франция), Исаак НЬЮТОН (1643-1727, Англия), Эдмунд ГАЛЛЕЙ ( ХАЛЛИ, 1656-1742, Англия), Вильям (Уильям) Вильгельм Фридрих ГЕРШЕЛЬ (1738-1822, Англия), Пьер Симон ЛАПЛАС (1749-1827, Франция).

  • В начале 17 века (Липперсгей, Галилей, 1608 г) был создан оптический телескоп, многократно раздвинувший горизонт познания человечества о мире.
    • определяется параллакс Солнца (1671), что позволило с высокой точностью определить астрономическую единицу и определить скорость света,
    • открываются тонкие движения оси Земли, собственные движения звёзд, законы движения Луны,
    • в 1609- 1618 гг. Кеплер на основе этих наблюдений планеты Марс открыл три закона движения планет,
    • в 1687г. Ньютон опубликовал закон всемирного тяготения, объясняющий причины движения планет.
    • создаётся небесная механика;
    • определяются массы планет;
    • в начале ХIХ века (1.01.1801г.) Пиацци открывает первую малую планету (астероид) Цереру;
    • в 1802 и в 1804 годах были открыты Паллада и Юнона.

IV-ый Спектроскопия и фотография. (1814-1900гг). Спектроскопические наблюдения. Первые определения расстояния до звезд. Открытие планеты Нептун.

Ученые, внесшие значительный вклад в развитие астрономии в данный период: Йозеф фон ФРАУНГОФЕР (1787-1826, Германия), Василий Яковлевич (Фридрих Вильгельм Георг) СТРУВЕ (1793-1864, Германия-Россия), Джордж Бидделл ЭРИ(ЭЙРИ, 1801-1892, Англия), Фридрих Вильгельм БЕССЕЛЬ (1784-1846, Германия), Иоганн Готфрид ГАЛЛЕ (1812-1910, Германия), Уильям ХЕГГИНС (Хаггинс, 1824-1910, Англия), Анжело СЕККИ (1818-1878, Италия), Федор Александрович БРЕДИХИН (1831-1904, Россия), Эдуард Чарльз ПИКЕРИНГ (1846-1919, США).

  • В 1806 — 1817 гг И.Фраунтгофер (Германия) создаёт основы спектрального анализа, измеряет длинны волн солнечного спектра и линий поглощения, заложив таким образом основы астрофизики.
  • В 1845 г. И.Физо и Ж.Фуко (Франция) получили первые фотографии Солнца.
  • В 1845 — 1850 гг лорд Росс (Ирландия) открыл спиральную структуру некоторых туманностей
  • в 1846 г. И.Галле (Германия) по вычислениям У.Леверье (Франция) открыл планету Нептун, что явилось триумфом небесной механики
  • Внедрение в астрономию фотографии позволило получить фотоснимки солнечной короны и поверхности Луны, начать исследования спектров звёзд, туманностей, планет.
  • Прогресс в оптике и телескопостроении позволил открыть спутники Марса, описать поверхность Марса по наблюдениям его в противостоянии (Д. Скиапарелли)
  • Повышение точности астрометрических наблюдений позволило измерить годичный параллакс звёзд (Струве, Бессель, 1838г), открыть движение земных полюсов.

V-ый Современный период (1900-наст.время). Развитие применения в астрономии фотографии и спектроскопических наблюдений. Решение вопроса об источнике энергии звезд. Открытие галактик. Появление и развитие радиоастрономии. Космические исследования.

  • В начале ХХ века К.Э.Циолковский издаёт первое научное сочинение по космонавтике — «Исследование мировых пространств реактивными приборами».
  • В 1905 г. А.Эйнштейн создаёт специальную теорию относительности
  • в 1907 — 1916 годах общую теорию относительности, что позволило объяснить имеющиеся противоречия между существовавшей физической теорией и практикой, дало импульс для разгадки тайны энергии звёзд, стимулировало развитие космологических теорий
  • В 1923 г Э.Хаббл доказал существование других звёздных систем — галактик
  • в 1929 г. Э.Хаббл открыл закон «красного смещения» в спектрах галактик.
  • в 1918 г. установлен 2,5 – метровый рефлектор в обсерватории Маунт-Вилсон, а в 1947 г.там же вступил в строй 5-и метровый рефлектор)
  • Радиоастрономия возникла в 30-х годах 20-го века вместе с появлением первых радиотелескопов.
  • В 1933 Карл Янский из Bell Labs обнаружил радиоволны, идущие из центра галактики.
  • Гроут Ребер в 1937 году сконструировал первый параболический радиотелескоп.
  • В 1948 г. запуски ракет в высокие слои атмосферы (США) позволили обнаружить рентгеновское излучение солнечной короны.
  • Арономы начали изучение физической природы небесных тел и значительно расширили границы исследуемого пространства.
  • Астрофизика стала ведущим разделом астрономии, она получила особенно большое развитие в XX в. и продолжающая бурно развиваться в наши дни.
  • В 1957 г. было положено начало качественно новым методам исследований, основанным на использовании искусственных небесных тел, что в дальнейшем привело к возникновению новых разделов астрофизики.
  • В 1957 в СССР запущен первый искусственный спутник Земли, что ознаменовало начало космической эры для человечества.
  • Космические аппараты позволили выводить за пределы земной атмосферы инфракрасные, рентгеновские и гамма-телескопы).
  • Первые полеты человека в космос (1961 г., СССР), первая высадка людей на Луну (1969 г., США), — эпохальные события для всего человечества.
  • Доставка на Землю лунного грунта (Луна-16, СССР, 1970 г.),
  • Посадка спускаемых аппаратов на поверхности Венеры и Марса,
  • Посылка автоматических межпланетных станций к более далеким планетам Солнечной системы.

Источник: www.sites.google.com


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.